
Designing a

Universal Serial Bus (USB) Device

Using the Cypress CY7C63001

A USB Thermometer



Cypress USB Thermometer Application Note

Cypress Semiconductor Ver 1.03

Page 1

Introduction

Purpose

The purpose of this application note is to:

• Provide a brief overview of the Universal Serial Bus (USB) system.

• Describe the design of an actual USB device using a CY7C63001 Cypress USB controller
device.

• Illustrate how a Windows application communicates with a USB device through the Windows
drivers.

It provides:

• A set of common assembly language routines for use by Cypress USB controllers to handle
the interface to the USB system.

• A USB design guide for designing with the Cypress USB controller.

• A device driver which may be used to develop applications for non HID USB devices.

• Examples of communicating with drivers and USB devices for applications software.

• A glossary of common USB terms with which a user may be unfamiliar. We have defined
highlighted  terms in the glossary.

Scope
It is assumed that the reader is familiar with (but not necessarily expert at) Windows programming
using Microsoft Visual Basic (or C) and with assembly level programming of micro controllers.

This application note covers the basics of the USB bus architecture, but it is not intended to be a
comprehensive reference to the USB. For more information on USB, please see “The Universal
Serial Bus Specification.” This document is available online for download (http://www.usb.org)
and it is included in the USB Starter Kit CD-ROM.

It is beyond the scope of this application note to address any issues involving the actual writing of
Windows device drivers.

Operating Systems and Hardware Requirements for USB Support
There are several requirements that must be met in order to successfully use USB devices on
your system:

• Your hardware must support the USB.

Your system must contain a USB host controller and have USB connectors.

• Your BIOS must enable the USB host controller or provide the option to enable USB.

• Your operating system must support the USB.

• You must have the proper drivers for your USB device.

http://www.usb.org


Cypress USB Thermometer Application Note

Cypress Semiconductor Ver 1.03

Page 2

Hardware

• Integrated motherboard support

Most motherboards and systems produced today include integrated support for the USB. If
your system does not have integrated support, you can use an add-in adapter (see below).

USB connectors are identified by the symbol:

• BIOS support

If your motherboard has integrated support for the USB, your motherboard must also have a
BIOS that has support for the integrated hardware. Also, the BIOS Setup must enable the
integrated USB hardware. Currently, some systems have USB ports and hardware, but do
not have BIOS support for the ports (odd, but true).

If you are having problems getting your system to recognize your integrated USB Host Hub,
you should check both to see if your BIOS has support for the USB Host Hub and to ensure
that the host hub is enabled. The control of the USB hardware should show up as an
“Enable/Disable” item in your BIOS setup program .

• Add-in adapter support

If your motherboard does not support the USB directly or you wish to add additional hubs to
your system, adapters can be added to an existing computer to provide support. Usually,
these adapters plug into the PCI bus.

Operating Systems
At the time of this writing, there is only one released operating system that supports the USB and
that is the Microsoft OSR 2.1 release of Windows95™. Microsoft OSR2.1 is an upgrade of
Microsoft OSR2.0. OSR2.0 does not support USB and must be upgraded to OSR2.1 with the
appropriate upgrade from Microsoft.
Currently OSR2.0 and OSR2.1 are only available from OEM’s on newly purchased machines or
on the Microsoft Developer’s Network CD’s. They are not available through retail channels.

There is currently no upgrade for Microsoft Windows 95 that provides USB support.
There is also currently no upgrade for Microsoft Windows NT that provides USB support.
Full support is available in Windows 98 and Windows NT5.0. These operating systems are
expected to be generally released in 1998. Developers may obtain beta copies of Windows 98 for
early development. To get more information about the Beta Developers Program, go to the
Microsoft web site (http://www.microsoft.com).

Drivers

The vendor of the USB device will supply drivers that may be required for your device.

http://www.microsoft.com


Cypress USB Thermometer Application Note

Cypress Semiconductor Ver 1.03

Page 3

Common Questions

Q. “How do I determine if my operating system supports the USB?”
A. In order to use the USB with the Windows operating system, you need to have OSR2.1

or a more recent version of Windows such as Memphis (Windows98, currently in Beta
test).
You may determine the version of Windows you have through the System Properties.

Information to help you determine which version of the Windows operating system you
have is also available from Microsoft at:

http://www.microsoft.com/kb/articles/q158/2/38.htm

Identifying your operating system as OSR2.0, OSR2.1 or Memphis:

ORS 2.0 is Windows 95 version 4.00.950b.

OSR 2.1 is Windows 95 version 4.00.950b with the USB supplement installed.

Memphis is Windows 98 version 4.10.1423 or later.

System Properties
The version of Windows you have installed can be found by clicking on the "System" icon
in the Control Panel (See Figure 1 and Figure 2).

Figure 1      Microsoft Windows 95 TM Control Panel

http://www.microsoft.com/kb/articles/q158/2/38.htm


Cypress USB Thermometer Application Note

Cypress Semiconductor Ver 1.03

Page 4

Figure 2      Windows System Properties

You can determine whether the USB supplement has been installed by using the
“Add/Remove Programs” application which is also found on the control panel. If the USB
supplement is successfully installed, you should be able to find it in the list of software that
can be added or removed in the "Install/Uninstall" options within the "Add/Remove Programs"
screen.

Windows Version



Cypress USB Thermometer Application Note

Cypress Semiconductor Ver 1.03

Page 5

USB Basics
This section and the following sections of the application note are meant to provide a brief
overview of the USB system. They are not intended to provide a comprehensive treatment of the
topic. Readers are directed to the various USB documents, including the USB specification and
subsequent USB clarifications. You can obtain these documents at the USB web site
(http://www.usb.org).

USB Device Requirements
To provide a device or application that communicates on the USB requires adherence to a
number of items in the USB specification.
The amount of requirements can seem daunting at first.

Figure 3     Communications in the USB System

SIESIE

Host
Controller

USB Bus
Interface

USB Bus
Interface

USB System SW

manages devices

USB Logical
Device

a collection of
endpoints

Interconnect Physical DeviceHost

USB Wire

Buffers

Transfers

Transactions

Data Per
Endpoint

Interface
Specific

Function

a collection of
interfaces

Default Pipe

to Endpoint Zero

Pipe Bundle

to an interface

Pipe, represents connection abstraction

 between two horizontal entities

Data transport mechanism

USB-relevant format of transported data

No USB
Format

USB
Framed

Data

USB Framed
Data

USB
Framed

Data

No USB
Format

Interface x

Endpoint
Zero

Client SW

manages an  interface

Mechanical,

Electrical,

Protocol

 (Chapter 6,7,8)

USB Device

 (Chapter 9)

 USB Host

 (Chapter 10)

http://www.usb.org


Cypress USB Thermometer Application Note

Cypress Semiconductor Ver 1.03

Page 6

The minimum requirements for a USB device are:

• Respond to the minimum USB commands per the Spec.

• Observe the mechanical protocol for physically connecting to the USB.

• Observe electrical protocol for electrically connecting to the USB.

• Observe the USB specified data format and transport protocols.

• Handle Idle condition detection and enter and leave the Suspend condition per the USB
Spec.

• Detect the USB reset condition and take appropriate action.

• Power management per the USB spec.

That is quite many things to keep track of. Fortunately, many of these issues are handled
automatically by the Cypress USB Controller or are provided by Cypress in assembly code.
This leaves the designer free to concentrate primarily on the application specific aspects of their
project.
Using the Cypress USB controller, there is minimal additional hardware and software that is
required to interface to the USB bus. We have broken down the items into two groups: items are
handled for the designer by the Cypress USB controller (or are provided by Cypress) and items
that the designer must supply.

Items provided by Cypress:

• Responding to the minimum USB commands per the Spec.

Cypress supplies much of the needed assembly code that the controller can use to handle
the standard minimum set of USB commands.

ACK , NACK , and Stall  responses to SETUP’s, IN’s and OUT’s are handled based on the
setting of only a few control bits.

The Cypress USB Controller automatically sends data buffers and receives data transfers
independently on both Endpoint 0 and Endpoint 1 in response to SETUP’s, IN’s and OUT’s
using its 8-byte FIFO’s.

The type of packet which was received (SETUP, IN, or OUT) is automatically detected by the
Cypress controller and is reported in status bits. The assembly code can determine what
action to take based on this information.

• Observing the electrical protocol for electrically connecting to the USB

The Cypress controller includes USB I/O drivers to connect to the bus, thus no external bus
drivers are required.



Cypress USB Thermometer Application Note

Cypress Semiconductor Ver 1.03

Page 7

• Observing the USB specified data format and transport protocols.

The Cypress USB controller contains a Serial Interface Engine which performs all direct data
handling on the bus (bit stuffing , NRZI encoding/decoding, etc.).

It also handles basic bus protocol decoding for USB features such as Reset, Idle Detection,
PID decoding, etc.

• Handling Idle detection, entering and leaving the Suspend condition.

Bus Idle detection is handled automatically, making it easy to determine when the USB
device should be put in Suspend mode.

When the Cypress USB Controller is placed in Suspend mode, its on-chip power is reduced
per the USB specification, automatically.

The controller will automatically resume from the Suspend State on any USB activity. It may
also be programmed to Resume after GPIO or Cext  activity.

• Bus Reset and Power-On Reset conditions are automatically detected.

When a Reset is detected, the controller state is reset and program execution starts at a
user-defined subroutine.

The firmware can determine which event caused the reset through status bits.

Items provided by the user:

Each USB device has unique hardware and software characteristics that are not generic to the
USB system. The user must provide hardware and software development for these areas.

• Performing the correct application specific activity for each command.

While Cypress provides the majority of the assembly code for handling the interface to the
USB and general controller activities for each command, the user must develop code for any
activity that would be application specific.

• Observe the mechanical protocol for physically connecting to the USB

Each device must provide a means for their device to physically attach to the USB (USB
Spec 1.0, 6.3). Attaching your device to the USB requires either:

• A USB cable with one end permanently attached to your device and a USB “A” type plug
on the other end (to be connected to the host controller port).

• A USB “B” type receptacle on your device to which a USB cable with both an “A” and a
“B” plug will be attached.

• Observing the electrical protocol for electrically connecting to the USB.

To allow the USB hub to identify your device as a low speed device, the user must supply a
pull up resistor between the “D-“ line and a positive supply voltage. This resistor can be either
a 1.5KOhm, 5% resistor to connected to a 3.14 V - 3.47 V supply or a 7.5KOhm, 1% resistor
connected directly to the USB Vbus. (USB Spec 1.0, 7.1.3 and Device Working Group
Review Request 135, 3.3V Regulator Tolerance)

For more information on proper USB termination, please see the USB specification.



Cypress USB Thermometer Application Note

Cypress Semiconductor Ver 1.03

Page 8

• Power management per the USB spec.

The user must handle power shutdown and enable of external logic during Suspend and
other stages of USB operation.



Cypress USB Thermometer Application Note

Cypress Semiconductor Ver 1.03

Page 9

Communications Between Applications and Devices

Device Drivers
Applications cannot communicate directly with USB devices, and must do all communications
through a device driver . In turn, the device driver will communicate with the USB device through
the USB system drivers.
The device driver opens pipes  to endpoints  on the USB device. It uses these pipes for all
communications with the device.

Addresses and Endpoints
The Cypress CY7C63X0X family of USB Controllers support two endpoints (0 and 1). The USB
device uses these to communicate with the USB system in a manner defined by the USB
specification, its device driver, and its micro code.
Endpoint 0, the device default control endpoint, is always configured. The USB system uses this
endpoint for command and control of the device and for retrieving its status. Communications to
Endpoint 0 is always through a message pipe  and is bi-directional.

The Cypress USB Controller supports an additional endpoint, Endpoint 1. This endpoint is
unidirectional, can only be configured as an interrupt endpoint. It can be used to transmit data
from the device to the host.
Human Interface Devices  (HID) (mice, joysticks, and keyboards, etc.), frequently use Endpoint 1
to supply new information to the host on request.
The Cypress USB Controller also supports a programmable address register that holds the
device logical address on the USB. The USB assigns this address to the device during
enumeration .

Enumerating a USB Device
For a host to use a USB device, the host must first enumerate it. This procedure allows the USB
system to identify the device, load its driver if necessary, assign it a logical address, and
configure it. This sequence of events is called enumeration. In order for the host to use any of the
functions of a device, the host must first enumerate the device.
Each USB device has a pull-up resistor attached between a specific positive voltage and either
D+ or D- signal line of the USB. This configuration indicates whether the device is a low-speed or
full-speed device. D- pulled high indicates the device is a low-speed device while D+ pulled high
indicates a full-speed device. The CY63XXX series of micro controllers are low-speed USB
devices.
When a device is plugged into the USB, the USB system will detect the event. The USB system
will determine whether the newly attached device is a full- or a low-speed device by determining
which line (D+ or D-) is pulled high. It will also determine to which port the USB device is
attached.
The USB system will then initialize the new device by sending it a USB reset. This reset will not
affect any other device because the reset is only sent to the new devices' ports and not to the
other ports.
The system will then request the device’s Device Descriptor  (see Control Transfer below) to
Endpoint 0 at the default USB address, zero. The device will respond by sending its Device
Descriptor as requested.
When the USB system has received enough of the device descriptor to determine what the newly
attached device is, it will then attempt to locate an existing driver for the device. If a driver exists,
the USB System will automatically load it.
If the operating system cannot locate an existing driver, it will automatically prompt the user to
supply a driver, and will load the driver when the user has supplied it or its location.



Cypress USB Thermometer Application Note

Cypress Semiconductor Ver 1.03

Page 10

Once the driver has been loaded, the host will send the device a unique logical address that will
be used for all future communications.
It will then again request the device descriptor at the new address. After it completes reading the
device descriptor, it will then request the configuration descriptor.
Finally, the operating system and/or the driver will send the configuration information to the
device.
This completes the process of enumeration and the host may now use any of the configured
functions of the device.

USB Device Communication (Packets and Transactions)
The host communicates with a USB device during enumeration and operation through a series of
transactions on the USB. Most communication, including the process of enumeration, is
accomplished using these transactions. At first, deciphering these transactions may seem
complex, but it is really quite simple.
A transaction consists of several packets  of information sent on the USB.

Each transaction consists of:

• A token packet

This identifies the type of transaction (IN, OUT, or SETUP) and the recipient’s address and
endpoint. The host is the only one that will issue a token packet. INs and OUTs correspond
to IN and OUT transactions. A SETUP token is used for a Control Transfer transaction.
These transactions are covered below in detail.

• Some amount of data

Either the host or the device will send data. This can range from zero to some number of
bytes. The direction of the transfer will be indicated in the token. IN and OUT transactions
transmit data from device to host or from host to device, respectively. The size of the transfer
is determined by the context of the transaction. SETUP transactions always contain eight
bytes of data sent from the host to the device. They are simply a special form of an OUT
transaction.

• A handshake packet

This will indicate the status of a data transfer in a transaction.

The Cypress USB Controller automatically decodes these packets, and provides the information
contained in easy-to-use status and data locations. The designer can then use this information in
assembly code routines to determine what action to take. Since the designer does not need to
handle these packets individually, we will not discuss them in detail here.
The designer does need to handle the transactions, which are made up of these packets.

Transaction Types (INs, OUTs, and Control Transfers)
We need to be concerned with three types of transactions. They are INs, OUTs, and Control
Transfers .



Cypress USB Thermometer Application Note

Cypress Semiconductor Ver 1.03

Page 11

IN’s and OUT’s

• An “IN” tells the device to send the data that the host is expecting.

• An “OUT” tells the device to take the data the host will send.

Figure 4 shows the structure of INs and OUTs. You can see that they consist of three packets:

• A token identifying the transaction as an IN or OUT.

The host always sends this.

• The data

Data either is sent by the device or host. The source of the data is dependent on whether the
transaction is an IN or OUT respectively.

• A handshake

The recipient of the data sends this to indicate whether or not the transfer was successful.

Token

Data

FunctionHost

IN  OUT

Idle

DATA0/
DATA1

ACK

DATA0/
DATA1

Idle

ACK

NAK STALL

Idle

STALLNAK

Figure 4     Data Transfer Transaction

IN and OUT transactions may occur singly or as part of a larger sequence.
When used singly, an IN transaction is used by a host to communicate with an interrupt endpoint
(such as Endpoint 1 on the Cypress USB Controller) in order to retrieve data from the device. An
example would be a host retrieving position information from a mouse on a regular basis.
When used this way, the host must first configure the device to respond to the INs on Endpoint 1
by communicating on Endpoint 0 with control transfers.



Cypress USB Thermometer Application Note

Cypress Semiconductor Ver 1.03

Page 12

An IN or OUT can also be used as part of a larger sequence of transactions called a Control
Transfer. In a control transfer (see below), INs or OUTs are used both to transfer data and to
return status to the host.

Control Transfers
A host needs to be able to communicate with a device to control it or obtain its status. This is
done through the device’s Endpoint 0 using control transfers. A control transfer is simply a special
series of transactions in a specific sequence between a host and a control endpoint (Endpoint 0).
Control transfers  are used by a host to enumerate a device or change its state in any way, or
obtain its status. Control transfers may also be used to send data to a device (although this is not
the original intention of a control transfer).
A control transfer has at least two transaction stages (a SETUP stage and a Status stage). It may
also have an optional data stage, which consists of one or more IN or OUT transactions.

The SETUP stage is illustrated in Figure 5.

There are three types of Control Transfers: a Control Read, a Control Write, and a No-data
Control.
The three types are illustrated in Figure 6.

SETUP Stage

The SETUP stage (See Figure 5) consists of three packets: the SETUP token, eight bytes of
data, and the handshake packet.
A “SETUP” is a special type of “OUT” that gives a specific command to the USB device to do
something.

FunctionHost

Idle

DATA0

ACK

 SETUP

Idle

Token

Data

Handshake

Figure 5     Control SETUP Transaction



Cypress USB Thermometer Application Note

Cypress Semiconductor Ver 1.03

Page 13

Data Stage

The data stage, if it exists, consists of one or more IN or OUT transactions (See Figure 6), the
direction and number of which are specified in the SETUP stage. All transactions in the data
stage must be in the same direction, i.e. either all INs or all OUTs.

SETUP (0) OUT (1) OUT (0/1)

IN (0) IN (0/1)

Setup
Stage

Data
Stage

Control
Write

 Status
Stage

DATA0 DATA0

...

...
DATA1 DATA1

DATA1

IN (1)

OUT (1)

DATA0

DATA0/1

DATA0/1

OUT (0)

IN (1)Control
Read

DATA0 DATA1

SETUP (0)

IN (1)No-data
Control

DATA0 DATA1

SETUP (0)

Setup
Stage

 Status
Stage

Figure 6     Control Read and Write Sequences

Status Stage

In all three types of Control Transfers, the Status stage is an IN or an OUT (See Figure 6).
Additionally, the status stage has a data size of zero bytes and has a direction that is the opposite
of the direction of the previous transfer. Since the SETUP is actually a special OUT, the Status
stage for a No-data Control is an IN. The Status stage is also a zero byte transfer (an IN or an
OUT with no data).
In a Control Read or Write, the Setup  will specify how many bytes of data are to be read or
written. However, if the Host enters a Status stage prior to completing the transfer of data, all
further data transfers for that Control Transfer are canceled. The host can enter the Status stage
by issuing an IN during a Control Write or an OUT with a zero byte data length during a Control
Read.

How Control Transfers are Used
Control transfers are like a command and response between the host and the USB device. They
are simple and well defined in the USB Specification.
When a SETUP packet is received by the device, the device knows that it is receiving a Control
Transfer. It decodes the SETUP to determine what to do with the following data (if any), and then
proceeds accordingly.
Control Transfers handle most stages of the enumeration  process: Get Device Descriptor, Set
Address, Get Configuration Descriptor, and Set Configuration.
Since Control Transfers are used for fundamental control of the device, they are very critical.
Cypress provides assembly language routines to handle the common control transfers the device
will receive. The designer should be familiar with them in order to be able to add the device
specific requirements of their design. These routines are located in USB.ASM on the Cypress
USB CD-ROM.
The specifics of each of the Control Transfers can be found in the USB Spec, Chapter 9, "USB
Device Framework".



Cypress USB Thermometer Application Note

Cypress Semiconductor Ver 1.03

Page 14

Powering a USB Device
The USB system limits both the total power, which the USB bus can supply for all devices, and
the power consumed by a single device.

Bus Powered Devices
A USB device may receive all or part of its power directly from the USB. However, the USB
specification limits the amount of current a device can draw from the USB. This amount depends
on:

1. The state of the device

• Powered

Prior to the device completing enumeration, power consumption is limited to one unit load
(100 mA). This is a maximum value, and not an average value. (USB Spec 1.0, 7.2.1,
USB Core Specification Clarifications by Section, rr97)

• Configured

Once configured, there are two classes of devices in terms of power consumption: low
power devices and high power devices.

Low-power devices may draw no more than one unit load (100 mA) from the USB.

High-power devices may increase their power consumption to five unit loads (500 mA) or
the maximum power they have specified during enumeration.

• Operating Power Drain

Once configured, a device may draw as much power as allowed by the USB
specification.

• Suspended

When a device is in Suspend Mode its power drain is limited to 500 µA. This includes the
power consumed by the pull-up configuration resistor on the D+ or D- line.

2. The type of Hub to which it is attached

Hubs can supply different amounts of current to their ports depending on whether they are
self-powered or bus-powered.
A device may draw up to 500 mA from the USB if it is attached to a self-powered hub.

If a device is attached to a bus-powered hub, it may only draw up to 100 mA from the USB.
The hub in the desktop PC is usually considered a self-powered hub. However, the hub in a
portable PC might be considered a bus-powered hub. (USB Specification 1.0, 7.2.1)
If your device is a high powered device, it may exceed the available USB power from some
hubs or in combination with other USB devices. If the power requirements are exceeded, it
may become necessary to convert the design to “self-power” instead of “bus-power.”

3. The maximum current that the device has told the USB system it will need

The maximum amount of power a device will draw from the USB is specified in the
configuration descriptor.
This value is read the by the USB system during enumeration.



Cypress USB Thermometer Application Note

Cypress Semiconductor Ver 1.03

Page 15

4. Supply voltage range

The voltage supplied by a USB hub at its “A” connector may be between 4.4Vdc and
5.25Vdc.

There may be additional loss in the cable between the “A” connector and the device itself.
Bus-powered low-power devices with detachable cables must be able to enumerate correctly
with supply voltages between 4.15Vdc and 5.25Vdc at the device. Bus powered devices with
an attached cable must be able to enumerate with a supply voltage between 4.4Vdc and
5.25Vdc at the “A” connector of the cable (USB Spec 1.0, 7.2.1.3).
All bus-powered devices must be able to continue normal operations when the supply voltage
at the device momentarily drops to 4.0Vdc.

Self-Powered Devices
Self-powered devices may use a combination of power from the USB and a local source. They
must meet the same requirements as a bus-powered device in regards to the power they draw
from the USB. However, the self-powered portion of the design is solely limited by the capabilities
of the external power supply.



Cypress USB Thermometer Application Note

Cypress Semiconductor Ver 1.03

Page 16

Designing the “Cypress USB Thermometer”

Overview of the Cypress USB Thermometer system
The goal of this project was to produce a low cost system that would display temperature from a
remote device.
This application note documents the design of this system using the Cypress CY7C63001 USB
controller chip to implement the USB thermometer.

It provides:

• A set of common USB assembly language routines which are usable by Cypress USB
controllers to communicate with the USB system.

• A set of assembly language routines which are usable by Cypress USB controllers for
performing serial I/O to external logic.

• USB hardware design guidelines for implementing a USB device using Cypress USB
controllers.

Partitioning the elements of our USB based system

The basic elements of the system are:

• A Windows application to acquire the temperature from the USB device and display it for the
user.

• A USB enabled host PC and OS (with the appropriate drivers) to run the application and
provide the USB hardware and software interface.

• A USB device which will connect to the USB, measure the temperature and communicate
that measurement to the host.

Figure 7 illustrates the elements of the temperature measurement and display system.



Cypress USB Thermometer Application Note

Cypress Semiconductor Ver 1.03

Page 17

Figure 7     Elements of a USB System

A complete schematic of the Cypress USB Thermometer device is shown in Figure 8.

USB Device

USB Controller

(CY7C63001)

Temperature Sensor

CY3640

Windows
Application

- Thermometer -

OS with USB
Support

USB Enabled Host PC

(OSR2.1 or Memphis)



Cypress USB Thermometer Application Note

Cypress Semiconductor Ver 1.03

Page 18

Figure 8     CY3640 Schematic



Cypress USB Thermometer Application Note

Cypress Semiconductor Ver 1.03

Page 19

Partitioning the Cypress USB Thermometer device

There are four main sub-systems in the Cypress USB Thermometer device:

• The USB interface

• The temperature sensor interface

• The enumeration LED

• The Centigrade/Fahrenheit button

Overview

All USB communication between the host and the thermometer occurs on an interrupt basis in the
Endpoint 0 interrupt service routine.
After a reset, the system is started in the main() routine in USB.ASM. This routine initializes the
USB variables, the IO ports, the temperature sensor variables, and the data space. The system
loops here, doing nothing except responding to USB Commands until the device has been
enumerated .

Once the device is enumerated, the main routine also polls the temperature sensor approximately
once every 10 ms to retrieve the new temperature reading, and updates the brightness of the
enumeration LED if necessary.
The enumeration LED is controlled by the P13 pin of the USB controller and is turned on when a
SetConfiguration command is received. This routine is decoded in USB.ASM.
An external sensor senses the temperature and all communication between the Cypress USB
Controller and the sensor is through Port 0 using pins P00, P01, and P02. These routines are
contained in DS1620.ASM.
The controller detects button presses using Port 1, pin P12. Routines which support button press
detection are found in the GPIO interrupt servicing routine and the 1024 µs interrupt service
routine in USB.ASM.

The USB electrical and mechanical interface

• Identifying the device as a low-speed device

To allow the USB hub to identify our device as a low-speed device, we must supply a pull up
resistor between the “D-“ line and a positive supply voltage. We chose a 7.5 KOhm, 1%
resistor connected directly to the USB Vbus. (USB Spec 1.0, 7.1.3 and Device Working
Group Review Request 135, 3.3V Regulator Tolerance)

It is important to insure that, if your device is self-powered, it cannot drive current into a
floating upstream I/O driver. Supplying the power connected to the pull-up resistor from the
USB Vbus is an easy way to insure this, and is independent of whether or not your device is
self-powered. (USB Spec 1.0, 7.1.3 and USB Core Specification Clarifications rr90)

• Physically connecting the device to the USB

We chose to use a B type receptacle on our PC board. This allows us to use a detachable
USB cable. However, the board also provides an in-line header footprint which the developer
may use to hardwire a USB cable directly to the board.

The USB Protocol Interface

The routines for the functions that support this interface are located in USB.ASM.



Cypress USB Thermometer Application Note

Cypress Semiconductor Ver 1.03

Page 20

We communicate with one endpoint (Endpoint 0) by a pipe that supports both system and vendor
specific communications.
Endpoint zero is required to support Setup oriented requests and other class or vendor requests.
Each request interrupts the processor through the Endpoint 0 Interrupt service routine found in
USB.ASM. This routine determines whether or not the request causing the interrupt was a
SETUP command. If the request was a SETUP, the command is decoded and the subsequent
routines service it.
When a token is received by Endpoint 0, the Cypress USB Controller’s Serial Interface Engine
(SIE) automatically determines if it is a SETUP packet. If the token is a Setup token, the SIE
automatically places the associated data in Endpoint 0’s FIFO.

It is only left to the designer to:

• Determine the type of Control Transfer that is indicated by the SETUP packet from data in the
FIFO

• Respond appropriately to the subsequent INs or OUTs based on the type of SETUP packet
received

• Respond correctly to the status transaction

Cypress supplies assembly language routines to accomplish this for the standard USB
commands the device will receive. These are found in USB.ASM.
Two vendor-specific control transfers are supported by the assembly code: GetTemperature and
SetBrightness.
When the controller receives a GetTemperature control transfer from the host, the last measured
temperature reading is returned, along with a value, which indicates whether or not the button has
been pushed since the last check.
When the controller receives a SetBrightness control transfer from the host, the brightness level
of the enumeration LED is changed according to the value specified in the control transfer.

The Temperature Sensing Logic

Since the Cypress USB Controller is a microcontroller with excellent control of its ports, no
external logic was necessary to interface to the temperature-sensing chip.
The temperature-sensing logic required three signals: reset, clock, and data (IN/OUT). All signals
required to operate the temperature-sensing device were controlled by micro code.
Port 0 is a low drive port and is suitable for use with low power devices such as CMOS and photo
detectors. The temperature sensor is a CMOS device so Port 0 was used (P00 – P02).
The routines for these functions are primarily located in DS1620.ASM.
A set of routines for generating timing signals was developed. These routines are generic for
generating any set of signals commonly needed for this type of purpose.
The assembly code for this interface can be found in files DS1620.ASM and DS1620.INC on the
CDROM.
A simple 9-bit temperature value is read from the temperature sensor every 10 ms. After
enumeration, the temperature sensor is initialized and placed into a continuous conversion mode.
It stores the current temperature internally. Thereafter, the temperature is read every 10 ms and
the value is placed into the USB endpoint one FIFO buffer for temporary storage.
When a “Read Temperature” command is decoded, it is copied from the EP1 FIFO along with the
button status and placed into the EP0 FIFO where it will be returned to the host as part of the
command.



Cypress USB Thermometer Application Note

Cypress Semiconductor Ver 1.03

Page 21

The Enumeration LED

The LED is controlled by I/O Port P13. Port 1 has high drive capability and is capable of driving
LEDs and other high current circuitry. The LED draws 20 mA and so Port 1 (P13) was chosen to
drive it.
When P13 goes low, this turns the LED on. The LED indicates the status of the USB connection.
Once this device has been enumerated, the LED is turned on. This occurs in the SetConfiguration
routine in USB.ASM.
A Vendor Specific Control Transfer, Set Brightness, is supported to allow us to adjust the
brightness of the LED. This passes the new brightness level to the controller.
To change the brightness of the LED we use a feature of the Cypress USB Controller that allows
us to set the strength of the output buffer of each port. We adjust the LED’s brightness by first
setting the new brightness value (default: FFh = High) and then setting the brightness update
field.
The routine MAIN in USB.ASM checks the update variable and sets the new brightness by
loading the value of the brightness variable into the P13 port strength register if necessary.

The Centigrade/Fahrenheit Button

A push button switch is used to indicate to the Windows application that the user wants the
Centigrade/Fahrenheit display mode to be toggled.
The switch is a normally open momentary closed device. One side of the switch is connected to
P12 and is also pulled high by a 10K resistor to Vcc. Thus, normally, P12 is held high.
Alternatively, it could be pulled high by using the selectable on chip pull up resistor on the
controller. This would eliminate the need for an external component.
The other side of the switch is connected to Vss.

When the switch is pushed, P12 is grounded.
This is illustrated in Figure 9.

We have programmed the Cypress controller to give a GPIO interrupt on the Low-to-High
transition of P12.
Any time this transition occurs, the GPIO interrupt routine sets a variable, gbButtonDebounce, to
100.
The 1024 µs interrupt routine decrements this variable approximately each millisecond.

If the routine decrements the variable to zero, it checks to see if the port has returned to a high.
If P12 is now high, the routine determines that a valid button press and release has occurred.
If the port has not returned to a high state, the routine determines that the button has not yet been
released or is bouncing and, resets the variable to 100. The process is then repeated.



Cypress USB Thermometer Application Note

Cypress Semiconductor Ver 1.03

Page 22

Figure 9     The Centigrade/Fahrenheit Button

The Cypress Watchdog Timer

The Cypress watchdog timer is not used in our application, but it deserves mention here.
This timer increments once each millisecond. If it reaches a count of eight, the Cypress USB
Controller will be reset. It is cleared by any write to the Watchdog Timer Register at I/O address
21h.
The timer can be used to help determine if your device has gotten into an inappropriate state from
which it cannot recover. An example would be if it were caught in a loop, unable to get out. After
eight ms, the watchdog timer would time out and the device would be reset.
The watchdog timer cannot be disabled directly. However, placing a write to the Watchdog Timer
Register at I/O address 21h in the 1024 µs interrupt-handling loop will constantly clear the
counter. This is an effective method of disabling the watchdog counter, since the only
inappropriate event or condition that could cause it to reset the controller would be if the 1ms
timer interrupt were disabled.

The Windows Application

The Thermometer application queries the USB thermometer and displays the temperature. The
application can display the temperature over time for the last 64 samples. The sample rate
displayed varies from one sample per second to one sample every 30 hours.

Communicating with USB devices

A normal Windows application cannot communicate directly with a USB device. All
communications with a device are through a USB device driver. This driver will be automatically
loaded when a USB device is attached to the USB bus and automatically unloaded when the
device is detached.
To communicate with a USB device, three Windows APIs are used: OpenFile(),
DeviceIoCommand(), and CloseHandle().

• Starting communication with a USB device

In order to communicate with a USB device, an application must first open a handle to its
driver. This is done with the OpenFile() Windows API.

To use this API, you supply the name of the driver, and information about how you want to
talk to the device (read, write, etc.).

If the device has been successfully attached to the USB, a device driver will have been
automatically loaded, and the OpenFile() API will succeed and will return a handle to the
driver. Otherwise, an error return will result.

P12



Cypress USB Thermometer Application Note

Cypress Semiconductor Ver 1.03

Page 23

• Talking to the device

Once the application software has received a handle to the device driver, it can start
communicating with the device with the DeviceIoCommand() API.

The device driver and various USB system drivers handle all actual communications with the
device itself. The style of the communications is varied and is device and driver dependent.

In the case of the Thermometer driver, the application software simply passes messages to
the driver and receives results back from the driver.

• Ending communication with a USB device

When the application is through communicating with the device, the handle to the device
driver should be released with the CloseHandle() API.

• Example code:

Visual Basic 5 Function Declares

Declare Function CreateFile Lib "kernel32" Alias "CreateFileA" (ByVal lpFileName
As String, ByVal dwDesiredAccess As Long, ByVal dwShareMode As Long,
lpSecurityAttributes As SECURITY_ATTRIBUTES, ByVal dwCreationDisposition As
Long, ByVal dwFlagsAndAttributes As Long, ByVal hTemplateFile As Long) As Long

Declare Function DeviceIoControl Lib "kernel32" (ByVal hDevice As Long, ByVal
dwIoControlCode As Long, lpInBuffer As Any, ByVal nInBufferSize As Long,
lpOutBuffer As Any, ByVal nOutBufferSize As Long, lpBytesReturned As Long,
lpOverlapped As OVERLAPPED) As Long

Declare Function CloseHandle Lib "kernel32" (ByVal hObject As Long) As Long

Visual Basic 5 Sample Code

Type SECURITY_ATTRIBUTES

  nLength As Long

  lpSecurityDescriptor As Long

  bInheritHandle As Long

End Type

Type OVERLAPPED

  Internal As Long

  InternalHigh As Long

  offset As Long

  OffsetHigh As Long

  hEvent As Long

End Type

Public Security As SECURITY_ATTRIBUTES

Public gOverlapped As OVERLAPPED

Public hgDrvrHnd As LONG

Public Const GENERIC_READ = &H80000000

Public Const GENERIC_WRITE = &H40000000

Public Const FILE_SHARE_WRITE = &H2

Public Const FILE_SHARE_READ = &H1

Public Const OPEN_EXISTING = &H3

Dim sFileName as STRING

Dim htemp As LONG



Cypress USB Thermometer Application Note

Cypress Semiconductor Ver 1.03

Page 24

Dim lIn as long, lInSize as long, lOut as long, lOutSize as long, lSize as long

  sFileName = "\\.\Thermometer_0"

  lIn = 11 ‘ Read Temperature Command

  lSize = 0

  lInSize = 2

  lOutSize = 3

‘ Get a handle to the driver

hgDrvrHnd = CreateFile(sFileName, GENERIC_WRITE Or GENERIC_READ,
FILE_SHARE_WRITE Or FILE_SHARE_READ, Security, OPEN_EXISTING, 0, 0)

‘ Send the “GetTemperature Command”

ltemp = DeviceIoControl(hgDrvrHnd, 4&, lIn, lInSize, lOut, lOutSize, lSize,
gOverlapped)

‘ Close the Handle to the driver

htemp = CloseHandle(hgDrvrHnd)

The Cypress USB Thermometer Driver
Because the Cypress USB Thermometer does not fall into one of the currently supported classes
of devices, Cypress wrote a vendor specific driver to accommodate the project. In the future, an
official USB class will undoubtedly support a thermometer type of device, and the writing of a
driver for this type of product would no longer be required. It is useful, in this application note, to
illustrate communication with custom driver software. For many classes of devices, class drivers
will be available with the operating system. However, for custom functionality or performance
enhancement, a custom driver may be preferred over a generic “class driver.”
See the “CY3640 User’s Guide” for documentation on the calls to the driver using the
DeviceIoControl() function from the above source code example.



Cypress USB Thermometer Application Note

Cypress Semiconductor Ver 1.03

Page 25

General Hardware Design Considerations

Connecting to the Bus

Noise

Noise coupled to and from D+ and D- and Power lines can cause problems with both EMI and/or
data errors.
D+ and D- should be kept away from signals that could couple noise to or from them such as
clock lines or other high frequency signals. A good ground plane under these lines and/or
shielding traces around them should be sufficient to minimize coupled noise to or from these
lines.
Good bulk and high frequency bypassing techniques should be used where the USB Vbus
connects to the USB cable. This is discussed below. If noise is a particular problem in your
design or environment, ferrite beads can be placed on the power and ground lines between the
bypass capacitors and the USB cable.

Cables and Connectors

Low-speed devices do not require shielded cables. However, some OEMs prefer the slight added
cost of shielded cables to minimize the possibility of noise or EMI conformance problems.

The maximum cable length for a low speed device is 3 meters.
Care should be taken to insure that the wire gauge of the cable is chosen to be sufficiently large
to insure that the minimum voltage (4.15Vdc) at the device is met under all conditions.
Only cables and connectors that are on the USB approved vendor list should be used.

Power Considerations

Bypassing

A bulk bypass-capacitor should be used on Vbus. It should have a value of less than 10 µF (per
the USB Spec). This upper limit prevents large inrush currents during an attach event. This
capacitor should be placed close to the power connection to the USB.
The bulk capacitor on the starter kit board, C1, value was chosen to be a 4.7 µF tantalum
capacitor.
Because the Cypress USB Controller uses so little current, it may take a while to discharge the
bulk capacitor after a hot disconnect. This can be a problem if the device is plugged in again
before the capacitor has discharged sufficiently to cause a power-on-reset.
A 50 KOhm resistor was placed between Vcc and Vss to bleed off the charge on the bulk bypass
capacitor after a hot disconnect. This value allows the power to bleed off in about 1 second.
50 KOhm X 4.7 µF =~250 ms per time constant

5 time constants to discharge the capacitor = ~1 Sec

It also consumes only 100 µA dc power, leaving 400 µA for other device elements during
Suspend. This allows the USB thermometer device to have more reliable and rapid unplug/plug
operations.
A low ESL (Effective Series Inductance) capacitor should also be used near the USB connector
to provide adequate high frequency bypass.
We chose a value of 0.1 µF for C2.
If noise is a problem in your environment, ferrite beads can also be placed on both the Vcc and
Vss lines of the USB connector for further isolation. Ferrite beads have the effect of filtering
specific frequency noise while incurring an insignificant dc voltage drop.
Additional bypassing at individual circuit elements should follow standard guidelines for these
elements.



Cypress USB Thermometer Application Note

Cypress Semiconductor Ver 1.03

Page 26

Testing the Thermometer (and Your Product)

OHCI and UHCI

While there should be no user visible difference between using an OHCI and a UHCI device, we
advise the designer to thoroughly check their product on each environment.
There may be aspects of the code that inadvertently depend on some sequence of events
present in one type of controller and not in the other.

Multiple Language Environments

If your device includes support for multiple languages, ensure that you test it with each language
for each operating system version. For example, Windows95 has versions specific for China,
Japan, Germany, France, etc. The different language versions may behave in slightly different
ways.

Voltage and Temperature Range

Insure that all logic is functional over the full voltage and temperature range covered by the USB
spec. This is 0ºC to 70ºC and a bus voltage of 4.4Vdc to 5.25Vdc. In addition, the device must
enumerate at a voltage of 4.15 Vdc.

Hot Connects and Disconnects

The device should be tested to ensure that it can be plugged and unplugged into the USB reliably
under a variety of conditions and with both UHCI and OHCI hubs.

Startup and Shutdown

The device should be tested under both cold starts (no power applied) while connected to the hub
and with warm starts (host restarted without being powered down).

OSR2.1 and Memphis

The device should be tested under both Windows 95 OSR2.1, Memphis (Windows 98), and any
other supported OS to insure it functions properly.



Cypress USB Thermometer Application Note

Cypress Semiconductor Ver 1.03

Page 27

Summary
Low cost USB devices can be easily and rapidly designed using the Cypress USB Controller
family of devices.
The Cypress USB Controllers handle most of the electrical issues you will encounter when
designing a USB product. This includes USB I/O drivers and power handling for RESET and IDLE
conditions.
The controller also automatically handles much of the low-level USB protocol issues for the
designer. Additionally, most of the code to support the USB interface is supplied by Cypress to
further ease the designer’s task.
The architecture of the device provides many features that reduce the need to supply external
logic to interface to other parts of the USB device.
These features include multiple I/O ports. These ports offer high and low current output drivers
and individually selectable pull-up resistors, programmable output-buffer pull-down strength, the
ability to wake-up the controller from a Suspend state, programmable interrupts on each pin, and
more.



Cypress USB Thermometer Application Note

Cypress Semiconductor Ver 1.03

Page 28

Glossary

ACK Acknowledgment.  Handshake packet indicating a positive
acknowledgment.

Active Device A device that is powered and not in the suspend state.
Application
Programming
Interface

A defined interface to services provided by system software to an
application.

API See Application Programming Interface.
Babble Unexpected bus activity that persists beyond a specified point in a frame.
Bandwidth The amount of data transmitted per unit of time, typically bits per second

(bps) or bytes per second (Bps).
Basic IO System The code stored in ROM or EPROM, which provides the lowest level of

interface to the computer and the basic configuration of the hardware. It is
executed at startup.

Big Endian A method of storing data that places the most significant byte of multiple
byte values at a lower storage addresses.  For example, a word stored in
big endian format places the least significant byte at the higher address and
the most significant byte at the lower address.  See Little Endian.

BIOS See Basic IO System.
BIOS Setup Program A program which can be entered at startup to configure the low-level details

of the hardware. This may include enabling or disabling USB hardware.
Bit A unit of information used by digital computers.  Represents the smallest

piece of addressable memory within a computer.  A bit expresses the
choice between two possibilities and is typically represented by a logical
one (1) or zero (0).

Bit Stuffing Insertion of a “0” bit into a data stream to cause an electrical transition on
the data wires allowing a PLL (Phase Locked Loop) to remain locked.

Buffer Storage used to compensate for a difference in data rates or time of
occurrence of events, when transmitting data from one device to another.

Bus Enumeration Detecting and identifying Universal Serial Bus devices.
Byte A data element that is eight bits in size.
Capabilities Those attributes of a Universal Serial Bus device that a host can

administrate.
Cext A port on the Cypress USB Controller, which may be used the same as a

GPIO port and as a special wakeup port for bringing a USB device out of a
Suspended condition.

Characteristics Those qualities of a Universal Serial Bus device that are unchangeable; for
example, the device class is a device characteristic.

Client Software resident on the host that interacts with host software to arrange
data transfer between a function and the host.  The client is often the data
provider and consumer for transferred data.

Configuring Software The host software responsible for configuring a Universal Serial Bus
device.  This may be a system configurator or software specific to the
device.

Control Pipe Same as a message pipe.



Cypress USB Thermometer Application Note

Cypress Semiconductor Ver 1.03

Page 29

Control Transfer One of four Universal Serial Bus Transfer Types.  Control transfers support
configuration/command/status type communications between client and
function.

CRC See Cyclic Redundancy Check.
Cyclic Redundancy
Check

A check performed on data to see if an error has occurred in transmitting,
reading, or writing the data.  The result of a CRC is typically stored or
transmitted with the checked data.  The stored or transmitted result is
compared to a CRC calculated for the data to determine if an error has
occurred.

Default Address An address defined by the Universal Serial Bus Specification and used by a
Universal Serial Bus device when it is first powered or reset.  The default
address is 00h.

Default Pipe The message pipe created by Universal Serial Bus system software to pass
control and status information between the host and a Universal Serial Bus
device’s Endpoint 0.

Device A logical or physical entity that performs a function.  The actual entity
described depends on the context of the reference.  At the lowest level,
device may refer to a single hardware component, as in a memory device.
At a higher level, it may refer to a collection of hardware components that
perform a particular function, such as a Universal Serial Bus interface
device.  At an even higher level, device may refer to the function performed
by an entity attached to the Universal Serial Bus; for example, a data/FAX
modem device.  Devices may be physical, electrical, addressable, and
logical.

When used as a non-specific reference, a Universal Serial Bus device is
either a hub or a function.

Device Address The address of a device on the Universal Serial Bus.  The Device Address
is the Default Address when the Universal Serial Bus device is first
powered or reset.  Hubs and functions are assigned a unique Device
Address by Universal Serial Bus software.

Device Descriptor A data structure with a defined format that USB devices use to report their
attributes to the host.

Device Driver Software which allows application software to talk to a hardware device
without having to directly address it. Generally, it provides a logical
interface to a physical configuration.

Device Endpoint A uniquely identifiable portion of a Universal Serial Bus device that is the
source or sink of information in a communication flow between the host and
device.

Device Enumeration See Bus Enumeration.
Device Resources Resources provided by Universal Serial Bus devices, such as buffer space

and endpoints.  See Host Resources and Universal Serial Bus Resources.
Device Software Software that is responsible for using a Universal Serial Bus device.  This

software may or may not also be responsible for configuring the device for
use.

Downstream The direction of data flow from the host or away from the host.  A
downstream port is the port on a hub electrically farthest from the host that
generates downstream data traffic from the hub.  Downstream ports receive
upstream data traffic.

Driver When referring to hardware, an I/O pad that drives an external load.  When
referring to software, a program responsible for interfacing to a hardware
device; that is, a device driver.



Cypress USB Thermometer Application Note

Cypress Semiconductor Ver 1.03

Page 30

DWORD Double word.  A data element that is 2 words, 4 bytes, or 32 bits in size.
Dynamic Insertion
and Removal

The ability to attach and remove devices while the host is in operation.

End User The individual user of a host.
Endpoint See Device Endpoint.
Endpoint Address The combination of a Device Address and an Endpoint Number on a

Universal Serial Bus device.
Endpoint Number A unique pipe endpoint on a Universal Serial Bus device.
Enumeration See Bus Enumeration
EOP End of packet.
FIFO A read/write memory element. On a FIFO read, data is presented in the

same order that it was written and vice versa.
Function A Universal Serial Bus device that provides a capability to the host.  For

example, an ISDN connection, a digital microphone, or speakers.
General Purpose IO Read/write ports on the Cypress USB Controller family which can be used

as required for general purpose by a designer of a USB device.
GPIO See General Purpose IO.
Handshake Packet A packet that acknowledges or rejects a specific condition.  For examples,

see ACK and NACK.
HID See Human Interface Device.
Host The host computer system where the Universal Serial Bus host controller is

installed.  This includes the host hardware platform (CPU, bus, etc.) and
the operating system in use.

Host Controller The host’s Universal Serial Bus interface.
Host Controller
Driver

The Universal Serial Bus software layer that abstracts the host controller
hardware.  Host Controller Driver provides an SPI for interaction with a host
controller.  Host Controller Driver hides the specifics of the host controller
hardware implementation.

Host Resources Resources provided by the host, such as buffer space and interrupts.  See
Device Resources and Universal Serial Bus Resources.

Hub A Universal Serial Bus device that provides additional connections to the
Universal Serial Bus.

Human Interface
Device

USB devices which are intended to be used primarily for human interface
with the computer. Examples are: Keyboards, mice, joysticks, etc.

Industry Standard
Architecture

The 8 and/or 16 bit expansion bus for IBM AT or XT compatible computers.

In A transfer of information from the device to the host.
Interrupt Request A hardware signal that allows a device to request attention from a host.

The host typically invokes an interrupt service routine to handle the
condition which caused the request.

Interrupt Transfer One of four Universal Serial Bus Transfer Types.  Interrupt transfer
characteristics are small data, non periodic, low frequency, bounded
latency, device initiated communication typically used to notify the host of
device service needs.

IRQ See Interrupt Request.
ISA See Industry Standard Architecture.



Cypress USB Thermometer Application Note

Cypress Semiconductor Ver 1.03

Page 31

Little Endian Method of storing data that places the least significant byte of multiple byte
values at lower storage addresses.  For example, a word stored in little
endian format places the least significant byte at the lower address and the
most significant byte at the next address.  See Big Endian.

LSB Least Significant Bit.
Mbs Transmission rate expressed in megabits per second.
MBs Transmission rate expressed in megabytes per second.
Message Pipe A pipe that transfers data using a request/data/status paradigm.  The data

has an imposed structure which allows requests to be reliably identified and
communicated.

MSB Most Significant Bit.
NACK Negative Acknowledgment. Handshake packet indicating that a device or

endpoint is functional and will be able to respond in the future, but is not
currently ready to respond.

Non Return to Zero
Invert

A method of encoding serial data in which ones and zeroes are
represented by opposite and alternating high and low voltages where there
is no return to zero (reference) voltage between encoded bits.  Eliminates
the need for clock pulses.

NRZI See Non Return to Zero Invert.
Object Host software or data structure representing a Universal Serial Bus entity.
OHCI Open Hardware Control Interface. Open Host Controller Interface. A

specification for implementing a USB host controller. Sponsored by
Microsoft and other companies.

Out A transfer of information from the host to a device.
Packet A bundle of data organized in a group for transmission.  Packets typically

contain three elements:  control information (e.g., source, destination, and
length), the data to be transferred, and error detection and correction bits.

Packet Buffer The logical buffer used by a Universal Serial Bus device for sending or
receiving a single packet.  This determines the maximum packet size the
device can send or receive.

Packet ID A field in a Universal Serial Bus packet that indicates the type of packet,
and by inference the format of the packet and the type of error detection
applied to the packet.

PCI See Peripheral Component Interconnect.
Peripheral
Component
Interconnect

A 32- or 64-bit, processor independent, expansion bus used on personal
computers.

Personal Computer
Memory Card
International
Association

The organization that standardizes and promotes PC Card technology.

Phase A token, data, or handshake packet; a transaction has three phases.
Physical Device A device that has a physical implementation; e.g., speakers, microphones,

and CD players.
PID See Packet ID.
Pipe A logical abstraction representing the association between an endpoint on

a device and software on the host.  A pipe has several attributes; for
example, a pipe may transfer data as streams (Stream Pipe) or messages
(Message Pipe).

Polling Asking multiple devices, one at a time, if they have any data to transmit.



Cypress USB Thermometer Application Note

Cypress Semiconductor Ver 1.03

Page 32

POR See Power On Reset.
Port Point of access to or from a system or circuit.  For Universal Serial Bus, the

point where a Universal Serial Bus device is attached.
Power On Reset Restoring a storage device, register, or memory to a predetermined state

when power is applied.
Protocol A specific set of rules, procedures, or conventions relating to format and

timing of data transmission between two devices.
Request A request made to a Universal Serial Bus device contained within the data

portion of a SETUP packet.
Root Hub A Universal Serial Bus hub directly attached to the host controller.  This hub

is attached to the host; tier 0.
Setup A packet that indicates that the transaction is a control transaction and what

operation is expected of the device. It is only sent by the host.
Root Port The upstream port on a hub.
Service A procedure provided by an SPI.
SPI See System Programming Interface.
SRC See Sample Rate Conversion.
Stage One part of the sequence composing a control transfer; i.e., the setup

stage, the data stage, and the status stage.
Stall A response on the USB that tells the host that the device responding is

unable to complete the request and requires host intervention to proceed.
System Programming
Interface

A defined interface to services provided by system software.

Termination Passive components attached at the end of cables to prevent signals from
being reflected or echoed.

Time-out The detection of a lack of bus activity for some predetermined interval.
Token Packet A type of packet that identifies what transaction is to be performed on the

bus.
Transaction The delivery of service to an endpoint; consists of a token packet, optional

data packet, and optional handshake packet.  Specific packets are
allowed/required based on the transaction type.

Transfer One or more bus transactions to move information between a software
client and its function.

Transfer Type Determines the characteristics of the data flow between a software client
and its function.  Four Transfer types are defined:  control, interrupt, bulk,
and isochronous.

UHCI Universal Host Controller Interface. A specification for implementing a USB
host controller. Sponsored by Intel.

Universal Serial Bus A collection of Universal Serial Bus devices and the software and hardware
that allow them to connect the capabilities provided by functions to the host.

Universal Serial Bus
Device

Includes hubs and functions.  See device.

Universal Serial Bus
Interface

The hardware interface between the Universal Serial Bus cable and a
Universal Serial Bus device.  This includes the protocol engine required for
all Universal Serial Bus devices to be able to receive and send packets.

Universal Serial Bus
Resources

Resources provided by Universal Serial Bus, such as bandwidth and
power.  See Device Resources and Host Resources.

Universal Serial Bus
Software

The host-based software responsible for managing the interactions
between the host and the attached Universal Serial Bus devices.



Cypress USB Thermometer Application Note

Cypress Semiconductor Ver 1.03

Page 33

USB See Universal Serial Bus.
USBD See Universal Serial Bus Driver.
Universal Serial Bus
Driver

The host resident software entity responsible for providing common
services to clients that are manipulating one or more functions on one or
more Host Controllers.

Upstream The direction of data flow towards the host.  An upstream port is the port on
a device electrically closest to the host that generates upstream data traffic
from the hub.  Upstream ports receive downstream data traffic.

Virtual Device A device that is represented by a software interface layer; e.g., a hard disk
with its associated device driver and client software that makes it able to
reproduce an audio .WAV file.

Word A data element that is two bytes or 16 bits in size.



Cypress USB Thermometer Application Note

Cypress Semiconductor Ver 1.03

Page 34

Links to Other USB Documents

Datasheets:

CY3650/CY3651 USB Developer’s Kit

CY7C63000/63001 Universal Serial Bus Microcontroller
CY7C63100/63101 Universal Serial Bus Microcontroller

CY7C63200/63201 Universal Serial Bus Microcontroller
CY7C63410/63411 Low Speed, High I/O 1.5 Mbps USB Controller
CY7C63412/63413 Low Speed, High I/O 1.5 Mbps USB Controller

CY7C63510/63511 Low Speed, High I/O 1.5 Mbps USB Controller
CY7C63512/63513 Low Speed, High I/O 1.5 Mbps USB Controller

CY7C64011/64012/64013 High Speed USB (12 Mbps) Peripheral Controller
CY7C64111/64112/64113 High Speed USB (12 Mbps) Peripheral Controller
CY7C65013/65113 4/8 Downstream Port USB Hub

CY7C66011/66012/66013 High Speed USB (12 Mbps) Controller with Hub
CY7C66111/66112/66113 High Speed USB (12 Mbps) Controller with Hub

Application Notes:

Designing a Low-Cost USB Mouse with the Cypress Semiconductor CY7C63000 USB Controller

Designing a Low-Cost Analog USB Joystick with the Cypress CY7C63200 USB Microcontroller

USB Specification:

USB Specification


