
fax id: 3453

Cypress Semiconductor Corporation • 3901 North First Street • San Jose • CA 95134 • 408-943-2600
January 27, 1998

Firmware Considerations for the Cypress Semiconductor
CY7C63xxx USB Microcontroller Family

Introduction
This application note provides information that will aid in the
development of firmware for the Cypress CY7C63xxx family
of low-speed USB microcontrollers. The intention is to provide
firmware developers with some useful insights into the intri-
cacies of the devices. This document is divided into two sec-
tions. Section 1 provides general firmware tips and tech-
niques to the firmware developer. Section 2 provides
information on how to write firmware routines to perform USB
communication.

For additional information on firmware development for the
CY7C63xxx devices, please refer to the CY7C63xxx
datasheets and the CYASM Assembler User’s Guide. Refer-
ence designs (including firmware source code) for the USB
mouse, joystick, and keyboard are also available with the pur-
chase of a CY3650/3651 Developer’s Kit. To purchase these
kits, please call your local Cypress Sales Office. All other
product information can be found at the Cypress Internet
website: http://www.cypress.com.

General USB information, including the USB Specification 1.0
and specific device class specifications, can be found at the
USB Implementers Forum (USB-IF) website for developers:
http://www.usb.org/developers.

Firmware Tips and Techniques
CPU Version Differences

There are two different CPU versions that exist in the Cypress
USB microcontroller family. The CY7C630/1/2xx contain CPU
A, while the CY7C634/5xx contain CPU B. The differences
between CPU A and CPU B are in their instruction sets.

CPU A and B Instructions That Are Different

CPU A restores the C and Z flags from stack when RET is
executed. CPU B does not alter the C and Z flags when RET
is executed.

CPU A Instructions That Are Not in CPU B

CPU A disables interrupts by clearing the Global Interrupt
register (0x20). That means interrupt service routines (ISR)
always had a form like this:

PUSH A ; save accumulator
<body> ; do something
MOV A, [interrupt_mask] ; load interrupt
mask
IOWR GLOBAL_INTERRUPT ;enable interrupts
POP A ; restore accumulator
RET ;return

The problem with this approach is that another interrupt could
occur after the interrupts were enabled and before either the
POP or RET instructions were executed. In an interrupt rich
environment, the nesting of successive interrupts could
cause the program and data stacks to grow until the firmware
crashed.

The IPRET instruction was added to fix this problem. The idea
is to combine the last three instructions of an ISR into one
atomic instruction. The effect is to ensure the stacks are re-
stored at the end of interrupt service before another interrupt
can occur. The ISRs now have a form like this:

PUSH A
<body>

MOV A,[interrupt_mask]
IPRET GLOBAL_INTERRUPT

In this way, the stacks do not grow to excess and crash the
firmware.

CPU B Instructions That Are Not in CPU A

The whole interrupt enable/disable mechanism was revised
in CPU B. The mechanism combines hardware and software
control without writing over the Global Interrupt Enable regis-
ter (0x20), thus eliminating the need to restore its contents
prior to returning from the ISR (required for CPU A). The hard-

Table 1. CPU A and B Instructions That Are Different

Instruction Opcode Description

RET 3Fh Return (flags handled
differently)

Table 2. CPU A Instructions Only

Instruction Opcode Description

IPRET 1Eh I/O write, pop, return

Table 3. CPU B Instructions Only

Instruction Opcode Description

CALL 5xh Call address in upper 4KB
of PROM

DI 70h Disable Interrupts

EI 72h Enable Interrupts

MOV X,A 40h Move A into X

MOV A,X 41h Move X into A

MOV PSP,A 60h Move A into Program
Stack Pointer

RETI 73h Return from Interrupt

Firmware Considerations for USB Microcontrollers

2

ware control disables interrupts when an interrupt is acknowl-
edged and enables interrupts when RETI is executed at the
end of an ISR. The format of an ISR in CPU B looks as fol-
lows:

PUSH A
<body>
POP A
RETI

The software can enable an interrupt by writing to register
0x20 and executing the EI instruction. Interrupts can be dis-
abled in software by executing the DI instruction. The EI in-
struction must be used at least once in the Reset routine (vec-
tor 0, ROM address 0000h) to enable interrupts for the first
time. Subsequently, these instructions can be used to control
the nesting of interrupts within ISRs.

The added CALL instruction allows the firmware to call sub-
routines in the upper 4 KB of ROM. Refer to the next topic,
Program Memory Organization, for more information about
this instruction.

The added MOV instructions allow more flexible usage of the
X register, and the MOV PSP,A instruction allows the firmware
to initialize the program stack pointer.

Program Memory (ROM) Organization

The program memory (ROM) organization is shown in Figure
1. The initial part of the ROM, beginning with address 0000h,
contains the Interrupt Vector Table where each vector location
contains a JMP ISR_address instruction. The remainder of
the ROM is left for user code. The user code section can
contain both program code as well as ROM data tables. ROM
data tables are defined using the DB, DS, DSU, DW, and DWL
instructions. ROM data can be read into the accumulator us-
ing the INDEX instruction.

Figure 1. Program Memory (ROM) Organization

Program Counter

The program counter (pc) is composed of two 8 bit registers,
pcl (low byte) and pch (high byte). The lower 6 bits of pch and
all 8 bits of pcl form a 14 bit address. Thus, the microcontrol-
lers can address up to 16 KB of program memory. Since the
largest EPROM size that the CY7C63xxx family has is 8 KB,
not all program counter bits are used (i.e., only 13 bits are
needed for an 8-KB EPROM).

Memory Pages

The program memory is organized into 256 byte pages, such
that the pch register contains the memory page number, and
the pcl register contains the offset into that particular memory
page.

When the pcl register (page offset) increments above the val-
ue FFh, the pch register (page number) is not automatically

incremented by the CPU. Since the pcl register would wrap
around to 00h while pch stayed the same, the firmware would
once again execute instructions at the beginning of the same
memory page, and never be able to execute instructions in
the next page. To prevent this, a special instruction called
XPAGE is used to increment the page number.

By default, the CYASM assembler automatically inserts
XPAGE instructions at the last location of the memory page
to increment pch. This has the effect of moving the instruction
that would have been last on one page to the first location of
the next page. For two byte instructions starting two bytes
from the end of a page, a NOP instruction is placed before the
XPAGE so that both bytes of the instruction are forced onto
the next page.

Additionally, the assembler provides the XPAGEON and XPA-
GEOFF directives to control XPAGE insertion. For instance,
the XPAGEOFF directive should be used prior to the definition
of any ROM data tables to prevent data corruption by the in-
sertion of XPAGE opcodes.

4-KB Boundary

The CY7C634/635xx family can have up to 8 KB of EPROM
for program code space. For these microcontrollers, it is im-
portant to distinguish the lower 4 KB from the upper 4 KB of
ROM, due to the fact that there are some inherent limitations
to using the upper 4 KB. For instance, the INDEX (Fxh), CALL
(9xh), and jump instructions only accept a 12-bit address op-
erand. With these instructions, the firmware is limited to exe-
cute in the lower 4 KB. Furthermore, since the interrupt vector
table for the CY7C63xxx family begins at program address
0000h, and each vector location contains a two-byte JMP in-
struction (8xh) with a 12-bit address operand, all interrupt ser-
vice routines (ISRs) must begin in the lower 4 KB.

To make use of the upper 4 KB, a long CALL instruction (5xh)
was added to the instruction set of CPU B (see Table 3).
When the assembler sees a CALL instruction with an address
operand greater than 12 bits, it uses opcode 5xh with the
lower 12 bits of the destination address instead of using op-
code 9xh. The long CALL instruction allows the firmware to
access subroutines in the upper 4 KB by setting bit 13 of the
program counter to 1 so that the computed address will be in
the upper 4 KB. Once a subroutine in the upper 4 KB is being
executed, the address operands for INDEX, CALL (9xh), and
jump instructions refer to locations in the upper 4 KB. The
execution of the matching RET instruction to the long CALL
will restore the program counter to its original location in the
lower 4 KB, since all 14 bits of the return address would be
popped off the program stack into the program counter.

Please note that there is no way to call subroutines located in
the lower 4 KB from the upper 4 KB. However, if an interrupt
is generated while executing a subroutine in the upper 4 KB,
the interrupt service routine (ISR) can still be executed even
though it is located in the lower 4 KB. Prior to calling the ap-
propriate ISR, the 14-bit program counter, along with the zero
and carry flags, are pushed onto the program stack by the

Interrupt
Vector
Table

User code space

Start of ROM
(address 0000h)

End of ROM
(ROM sizes: 2k, 4k, 6k, 8k)

Table 4. XPAGE Instruction

Instruction Opcode Description

XPAGE 1Fh Increments the memory
page number (pch)

Firmware Considerations for USB Microcontrollers

3

CPU. Upon execution of the RETI instruction, the CPU will
pop all 14 bits of the program counter, as well as the zero and
carry flags, from the program stack so that once the ISR is
complete, execution can resume in the upper 4KB.

Data Memory (RAM) Organization

The CY7C63xxx provide two different RAM sizes for data
storage and USB communication: 128 bytes
(CY7C630/1/2xx) and 256 bytes (CY7C634/5xx). The data
RAM is organized around 4 major components: the program
stack, the data stack, user-defined variables, and the USB
endpoint FIFOs. Of the four components, only the endpoint
FIFOs have fixed locations (near the top of RAM): the
CY7C630/1/2xx have two 8 byte FIFOs from addresses 70h
to 7Fh, and the CY7C634/5xx have three 8 byte FIFOs from
addresses E8h to FFh. The endpoint FIFOs are used as com-
munication buffers to send and/or receive data from the USB
host.

The program stack pointer (psp) points to the top of the pro-
gram stack, and the data stack pointer (dsp) points to the top
of the data stack. The program stack grows upward in RAM
by incrementing the psp, while the data stack grows down-
ward by decrementing the dsp. Upon reset, both the psp and
the dsp are initialized to RAM address 00h. Since the data
stack grows by decrementing the dsp, the dsp needs to be
moved higher in RAM to avoid wrapping around to the top of
RAM and overwriting the endpoint FIFOs. This is accom-
plished by the SWAP A, DSP instruction.

Typically, the value of the DSP is set during the first few in-
structions of the Reset vector (vector 0, ROM address 00h).
The code fragment looks as follows:

MOV A, data_stack_start_address

SWAP A, DSP

A typical data memory organization is shown in Figure 2. As
stated earlier, the endpoint FIFOs are located at the top of
RAM. The program stack is located at the bottom of RAM, and
the data stack is located above the program stack. The begin-
ning address of the data stack should be chosen high enough
so that the two stacks do not grow into each other. Finally, the
remaining memory space between the data stack and the
endpoint FIFOs is left for user-defined variables.

Figure 2. Data Memory (RAM) Organization

Conditional Jumps

The conditional jump instructions are shown below in Table 6.

The CPU requires only 4 cycles to execute a conditional jump
instruction when the jump is not taken. Otherwise, the instruc-
tion takes 5 cycles, as stated in the CYASM Assembler User’s
Guide.

Suspend and Resume

The CY7C63xxx family provides a suspend mode in which the
microcontroller can conserve power by stopping the clock os-
cillator and timers, as well as powering down the microcon-
troller. This feature is used primarily to comply with the USB
Specification 1.0 which states that devices are required to go
into suspend mode after detecting 3 ms of no USB bus activ-
ity, and must consume less than 500 µA of current. The state
of the bus (active, idle) can be determined by reading the Bus
Activity bit of the USB Status and Control Register (bit 0 of
register 0x13 in the CY7C630/1/2xx; bit 3 of register 0x1F in
the CY7C634/5xx). When the Bus Activity bit is set to 1, the
bus is active. Otherwise, the bus is idle. Note that this bit is a
sticky bit and must be cleared prior to reading the state of the
bus. The 1-ms interrupt service routine is the most appropri-
ate place to detect the idle bus condition (since it can most
easily time the 3-ms idle duration required to put the device
into suspend mode).

The firmware can put the device into suspend mode by writing
a 09h to the Status and Control Register (0xFF). This will
simultaneous set the Suspend bit (bit 3) and the Run bit (bit
0) to 1, allowing the controller to wake up under certain con-
ditions. The wake-up, or resume, conditions for the
CY7C630/1/2xx family are:

• USB bus activity

• Cext interrupt

• GPIO interrupt

The resume conditions for the CY7C634/5xx family are:

• USB bus activity

• GPIO interrupt

The following code fragment specifies how to put the micro-
controller into suspend mode:

MOV A, 09h

IOWR FFh

NOP

Once the IOWR instruction is executed, the device immedi-
ately goes into suspend mode. When one of the wake-up con-

Table 5. SWAP A, DSP instruction

Instruction Opcode Description

SWAP A, DSP 30h Swaps the contents of A
with that of the DSP

Bottom of RAM
(address 00h)

Program
Stack
Pointer

Program
Stack

Data
Stack

Data
Stack
Pointer

Top of RAM
(630/1/2xx: 7Fh
634/5xx: FFh)

Endpoint
FIFOs

User-defined
Variables

Table 6. Conditional Jump Instructions

Instruction Opcode Description

JZ address Axh Jump to address if zero
flag is set

JNZ address Bxh Jump to address if zero
flag is not set

JC address Cxh Jump to address if carry
flag is set

JNC address Dxh Jump to address if carry
flag is not set

Firmware Considerations for USB Microcontrollers

4

ditions occurs, the CPU will execute the next instruction im-
mediately after the IOWR. If an interrupt causes the resume,
the ISR would be delayed by this next instruction. For this
reason, it is a good idea to use a NOP right after the IOWR.
This prevents the possibility of the next instruction from alter-
ing the state of the device in a way that would affect the exe-
cution of the ISR.

Watchdog Timer and Reset

The CY7C63xxx has a Watchdog Timer that prevents the de-
vice from hanging up or getting stalled because of some firm-
ware mishap. The Watchdog Timer increments every 1.024
ms. If it is allowed to count to roughly 8 ms, a Watchdog Reset
will occur (resetting the controller). The Watchdog Reset bit
in the Status and Control register (bit 6 of register 0xFF) will
be set to 1 to record this event. To prevent this, the Watchdog
Timer must be cleared prior to reaching 8 ms. This is accom-
plished by a write to the Watchdog Timer Clear register (0x21
in 630/1/2xx, 0x26 in 634/5xx):

IOWR Watchdog_timer_clear

For some applications, the above instruction can be placed in
the 1-ms ISR, thereby ensuring that the Watchdog Timer is
cleared every millisecond. However, this method does not ful-
ly utilize the benefit of this reset in the event that the firmware
mainloop gets stalled, since the Watchdog reset will not oc-
cur. In these cases, it is better to put the IOWR instruction
within the mainloop, while ensuring that the delay between
writes to the register never exceeds 8 ms. For additional ro-
bustness, RAM data variables can be used to save the state
of the device prior to the Watchdog Reset, such that the Reset
routine (vector 0, ROM address 0000h) can allow the device
to recover in a good state.

In the CY7C630/1/2xx, the Watchdog Reset bit in the Status
& Control register disables the SIE output drivers when it is
set to 1 (either by firmware or by a Watchdog Reset event).
The SIE will still respond to packets sent to the device by the
USB host, but will not be able to send packets.

USB Communication
The CY7C63xxx support the two types of low-speed USB
communication transactions defined in chapter 5 of the USB
Specification 1.0: control transfers and interrupt transfers.
Both types of transfers are accomplished using device end-
points. Each endpoint has an associated 8 byte communica-
tion FIFO, control registers, and is capable of generating in-
terrupts to the CPU.

Control Transfers

Control transfers are bidirectional transfers that take place
over the Control Pipe. The Control Pipe is a message pipe
that connects the USB host to endpoint 0 of the USB device.
Control transfers take the form of USB host-initiated requests
followed by device responses. The request is structured as a
SETUP token packet followed by a DATA0 packet containing
8 bytes of data that describe the request. Please refer to
Chapter 9 of the USB Specification 1.0 for a description of the
standard USB control requests.

There are 3 basic types of control transfers that the host can
initiate: Control Read, Control Write, and No Data Control.
These transfers can be organized into three separate trans-
action stages: a Setup Stage, a Data Stage, and a Status

Stage (see Table 7). Further information on Control Transfers
can be found in Section 8.5.2 of the USB Specification 1.0.

Setup Stage

The Setup Stage transaction consists of a SETUP token
packet followed by a DATA0 packet containing 8 data bytes
that describe the request sent from the host to the device. See
section 9.3 of the USB Specification 1.0 for a description of
the SETUP data. The device sends an ACK handshake pack-
et to the host to acknowledge receipt of the SETUP data.

Data Stage

The Data Stage transaction is used to transfer data between
the host and the device. The data will be sent in 8 byte packets
beginning with the DATA1 PID. Subsequent data packets will
have the PID toggled between DATA0 and DATA1. The final
packet will have a data payload of 8 bytes or less.

A Control Read transfer will move data from the device to the
host. For each data packet, the host will send an IN token
packet. The device will either respond with a DATA packet
(followed by an ACK from the host), a NAK handshake packet
(indicating the device is busy), or a STALL handshake packet
(indicating an error has occurred, e.g., an invalid command
has been received).

A Control Write transfer will move data from the host to the
device. Prior to each data packet, the host will send an OUT
token packet. The device will either respond with an ACK
handshake packet (acknowledging data reception), a NAK
handshake packet, or a STALL handshake packet.

No Data Control transfers do not have a Data Stage.

Status Stage

The Status Stage transaction indicates completion of the en-
tire transfer. The transfer direction of the Status Stage is op-
posite to that of the prior Data Stage.

For Control Read transfers, the host sends an OUT token
packet followed by a zero-length DATA1 packet. The device
responds with an ACK (completing the Status Stage), NAK,
or STALL.

For Control Write and No Data Control transfers, the host
sends an IN token packet. The device responds with a
zero-length DATA1 packet to acknowledge the Status Stage
(followed by an ACK from the host), a NAK, or STALL.

Interrupt Transfers

Interrupt transfers are unidirectional data transfers between
the host and the device over an Interrupt Pipe. The Interrupt
Pipe is a stream pipe for which no structure is imposed on the
data. Version 1.0 of the USB Specification only provides for

Table 7. Control Transfers

Transfer
Type

Setup
Stage Data Stage

Status
Stage

Control
Read

SETUP IN...IN OUT

Control
Write

SETUP OUT...OUT IN

No Data
Control

SETUP - IN

Firmware Considerations for USB Microcontrollers

5

interrupt transfers from the device to the host (IN transfers).
Subsequent versions of the specification will likely provide for
host to device transfers (OUT transfers), but these will not be
discussed in this document. Interrupt transfers are sin-
gle-stage transactions consisting of a direction token packet
(IN, OUT), a DATA0/1 packet, and/or a handshake packet
(ACK, NAK, STALL).

IN Interrupt Transfers

A low-speed endpoint (other than the control endpoint, end-
point 0) can be setup as an IN Interrupt endpoint with a polling
rate between 10 ms to 255 ms. For each polling interval, the
USB host sends an IN token packet over the Interrupt Pipe to
the interrupt endpoint. The device can respond with a
DATA0/1 packet containing 0 to 8 bytes of data or a NAK
handshake packet (indicating that no data is required to be
sent during this interval).

Enumeration

When a USB device is first attached to the USB bus, the USB
host enumerates the device. Enumeration is the process of
identifying and configuring the newly attached device through
a series of Control Transfers between the host and the device.
There are six enumeration steps for all USB devices:

1. USB Bus Reset

2. Get Device Descriptor using default address 0

3. Set Device Address

4. Get Device Descriptor using new address

5. Get Configuration Descriptor

6. Set Configuration

More information on each of these requests as well as the
various descriptors can be found in Chapter 9 of the USB
Specification 1.0.

USB Bus Reset

The host sends a Single-Ended Zero (SE0) signal, where
both D+ and D– are low, for 10 ms. At this point, endpoint 0
of the device should be enabled to accept SETUP token pack-
ets.

Get Device Descriptor (address 0)

The USB host sends a control request (endpoint 0) to device
address 0 (default address) to get the first 8 bytes of the De-
vice Descriptor from device. The request follows the protocol
of a Control Read transfer. Figure 3 shows an example USB
bus trace of for this control request. Each packet of the re-
quest transaction is listed on a separate line, with the sender
of each packet listed to the left.

Figure 3. Get Device Descriptor Request (address 0)

Set Device Address

The USB host sends a Set Address control request to give
the newly attached device an address for future communica-
tion. This request follows the No Data Control protocol (see
Figure 4).

Figure 4. Set Address Request

Get Device Descriptor (new address)

The USB host sends a request to get the entire Device De-
scriptor, but this time it uses the new address given to the
device. Once again, this request follows the Control Read
protocol. In the Figure 5 example, the new address is 0x02.

Host

Device

Host

Host

Host

Host

Host

Device

Device

SETUP

Host

Host

Host

Host

Device

Device

SETUP

Firmware Considerations for USB Microcontrollers

6

Figure 5. Get Device Descriptor Request (new address)

Get Configuration Descriptor

The USB host sends a control request to get the device’s
Configuration Descriptor. This request also follows the Con-
trol Read protocol. This request requires that the device will
send four descriptors in response to this request:

• Configuration Descriptor

• Interface Descriptor(s)

• Class Descriptor(s) (if any)

• Endpoint Descriptor(s)

The host can send multiple requests for Configuration De-
scriptors if the Device Descriptor specifies multiple configura-
tions. Each Configuration Descriptor specifies a configuration
of interfaces and endpoints that can be enabled by the host.
Figure 6 shows the device sending a single Configuration De-
scriptor (configuration value 1).

Figure 6. Get Configuration Descriptor Request

Set Configuration

The USB host selects one of the configurations that it identi-
fied from the previous request. At this point, the device is in
the ‘configured’ state and the endpoint(s) defined for the se-
lected configuration are enabled. Alternatively, the host can
select configuration 0 which puts the device in an ‘unconfig-
ured’ state where all endpoints (other than the control end-
point) are disabled. This request follows the No Data Control
protocol. Figure 7 shows an example of the USB host select-
ing configuration value 1 for the device.

Host

Host

Host

Host

Host

Host

Host

Host

Host

Host

Device

Device

Device

Device

Device

SETUP
Host

Device

Host

Host

Host

Host

Host

Device

Device

Host

Host

Device

SETUP

Firmware Considerations for USB Microcontrollers

7

Figure 7. Set Configuration Request

Data Reports

Once configured, the device can enable the endpoint(s) de-
fined in the selected configuration. In this example, endpoint
1 is enabled as an IN interrupt endpoint with a polling rate of
10ms. Figure 8 shows two device responses to IN token pack-
ets sent to endpoint 1:

• a DATA packet is sent

• a NAK token packet is sent

Figure 8. Endpoint 1 Transactions

The interrupt endpoint can be used to send data reports to
the USB host. However, since the USB Specification 1.0 has
not defined an OUT interrupt endpoint, the host is restricted
to using control transfers to send data to the device. One such
control request is Set Report which is defined for the Human
Interface Device (HID) class of devices such as mice, key-
boards, and joysticks. Further information on the HID class
can be found in the Device Class Definition for HID 1.0.

The Set Report control request follows the Control Write pro-
tocol. See Figure 9.

Figure 9. Set Report Request

Endpoint Communication with the CY7C630/1/2xx

The CY7C630/1/2xx have two endpoints: endpoint 0 for con-
trol transfers and endpoint 1 for interrupt transfers. The USB
Device Address Register (0x12) specifies the address that
the device will respond to. Upon reset, this register is set to
0s so that the Serial Interface Engine (SIE) is ready to re-
spond to the default address (address 0). During enumera-
tion, the USB host will send a Set Address control request
with a new device address. This new address should be
stored in register 0x12 once the No Data Control transfer
completes its Status Stage.

Endpoint 0

The endpoint 0 FIFO is located from RAM address 70h to
77h. Endpoint 0 can generate interrupts to the CPU after data
reception to or transmission from the endpoint 0 FIFO. Inter-
rupt vector 3 (ROM address 0006h) should contain a JMP
EP0_ISR instruction, where EP0_ISR is the beginning ad-
dress of the endpoint 0 interrupt service routine. To enable
endpoint 0 interrupts, bit 3 of the Global Interrupt Enable Reg-
ister (0x20) should be set to 1. This is normally done in the
Reset routine after a USB bus reset occurs. The USB Reset
bit, bit 5, of the Status and Control Register (0xFF) is set to 1
when a bus reset is issued by the host. The Reset routine can
read this bit to differentiate between a USB reset and a Pow-
er-on reset (bit 4). If a Watchdog reset occurs (bit 6 of 0xFF
is set to 1), then the SIE drivers are disabled. There are three
registers used to control communication to/from endpoint 0:
the USB Endpoint 0 RX Register (0x14), the USB Endpoint 0
TX Configuration Register (0x10), and the USB Status and
Control Register (0x13). The control logic for both the send

Host

Host

Host

Host

Device

Device

SETUP

Host

Host

Host

Device

Device

Host

Host

Host

Host

Device

Device

SETUP

Host

Host

Device

Firmware Considerations for USB Microcontrollers

8

and receive functions for endpoint 0 are distributed over these
three registers.

The receive control is primarily located in the RX register
(0x14), however bit 4 of the TX register (0x10) specifies the
validity of the data received from a SETUP or OUT data stage
(i.e., CRC, PID, or bitstuffing error). Register 0x14 records
information pertaining to packets sent to endpoint 0 by the
USB host: PID type (bits[2:0]), data toggle setting (bit 3), and
number of bytes received, including the 2 CRC bytes
(bits[7:0]). Three PID types can be recorded: SETUP (bit 0),
IN (bit 2), and OUT (bit 1).

The TX register controls how the endpoint will respond to IN
packets: send data (bit 7 set to 1), send NAK (bit 7 set to 0),
or send STALL (bit 5 set to 1). Bits[3:0] specify the number of
bytes to send to the host. Bit 6 specifies the data toggle set-
ting (DATA0/1). After bit 7 is set to 1 to enable a data trans-
mission, the bit will be cleared once the host sends an ACK.
The endpoint 0 ISR can read this bit to determine when a
transmission has completed.

The Enable Outs bit (bit 4) and Status Outs bit (bit 3) of the
USB Status and Control register (0x13) specify how endpoint
0 will respond to the reception of an OUT data stage or a
Status Stage OUT packet. If bit 4 is set to 1 while bit 3 is set
to 0 (as well as the Stall bit, bit 5, of 0x10), then OUT data
bytes will be written to the endpoint 0 FIFO (the OUT bit and
Count bits of the RX register will be updated as well). If bit 3
is set to 1 (bit 4 set to 0), then the endpoint 0 logic will check
to make sure that a valid Status Stage OUT has been re-
ceived (0 data bytes), and no data will be written to the FIFO.

Endpoint 1

The endpoint 1 FIFO is located from RAM address 78h to
7Fh. This endpoint can only send data from the device to the
host, and is used as an IN interrupt endpoint. Interrupts can
be generated to the CPU when data is transmitted from end-
point 1. Interrupt vector 4 (ROM address 0008h) should con-
tain a JMP EP1_ISR instruction, where EP1_ISR is the be-
ginning address of the endpoint 1 interrupt service routine. To
enable endpoint 1 interrupts, bit 4 of the Global Interrupt En-
able Register (0x20) should be set to 1. This should be done
after receiving a Set Configuration control request from the
host that selects a configuration which enables this endpoint.

The USB Endpoint 1 TX Configuration register (0x11) con-
trols data transmission from endpoint 1. To enable the end-
point, bit 4 should be set to 1. Otherwise, all IN token packets
sent to the device will be ignored. If bit 7 is set to 0, then IN
packets will be NAK’d. If bit 7 is set to 1, then data bytes will
be sent from the endpoint 1 FIFO. Bits[3:0] set the number of
bytes to send, and bit 6 sets the data toggle setting (DATA0/1).
After bit 7 is set to 1, the bit will be cleared once the data is
acknowledged by the host. The endpoint 1 ISR can read this
bit to determine if a data transmission is complete. Bit 5 is the
Stall bit. Setting this bit to 1 will STALL any IN packets sent to
the endpoint until the bit is cleared.

Endpoint Communication with the CY7C634/5xx

The CY7C634/5xx have 3 endpoints: endpoint 0 for control
transfers and endpoints 1 and 2 for interrupt transfers. The
USB Device Address Register (0x10) specifies the address
that the device will respond to in bits[6:0]. Bit 7 of this register
determines whether the address is enabled (set to 1) to re-
spond to USB traffic or disabled (set to 0) to ignore traffic.
Upon reset, this register is set to 0s so that the Serial Interface

Engine (SIE) is disabled and the address is set to 0. Bit 7
should be set to one after receiving a USB Bus Reset (the
USB Bus Reset bit, bit 5, of the Processor Status and Control
Register, 0xFF, will be set to 1) to enable the default address
0. Please note that, unlike the CY7C630/1/2xx, the USB Bus
Reset is not a true reset (Power-on and Watchdog resets are
true resets). Instead, the USB Bus Reset is an interrupt to the
CPU. The USB Bus Reset interrupt can be enabled by setting
bit 0 of the Global Interrupt Enable Register (0x20) to 1. Inter-
rupt vector 1 (ROM address 0002h) should contain a JMP
USB_RESET instruction, where USB_RESET is the begin-
ning address of the USB Bus Reset interrupt service routine.

During enumeration, the USB host will send a Set Address
control request with a new device address. This new address
should be stored in register 0x10 once the No Data Control
transfer completes its Status Stage.

Each endpoint has a Mode and Counter register associated
with it. The Mode register determines the response of the
endpoint to specific packet types according to the mode writ-
ten to the bits [3:0], as well as specifying the specific PIDs
received in bits [7:4]. The mode encoding and responses are
defined in section 16 of the CY7C634/5xx datasheet. The
Counter register specifies the data toggle setting (bit 7), va-
lidity of received data for SETUP and OUT tokens (bit 6), and
the number of bytes transmitted from or received in the end-
point FIFO (bits[3:0]).

Endpoint 0

The endpoint 0 FIFO is located from RAM address F8h to
FFh. Endpoint 0 can generate interrupts to the CPU after data
reception to or transmission from the endpoint 0 FIFO. Inter-
rupt vector 4 (ROM address 0008h) should contain a JMP
EP0_ISR instruction, where EP0_ISR is the beginning ad-
dress of the endpoint 0 interrupt service routine. To enable
endpoint 0 interrupts, bit 0 of the USB Endpoint Interrupt En-
able Register (0x21) should be set to 1. This is normally done
in the USB Bus Reset ISR after a USB Bus Reset occurs.

The USB Endpoint 0 Mode register is 0x12, and the Endpoint
0 Counter register is 0x11. The SIE can lock out writes to
these registers by the firmware while it is updating their con-
tents. To unlock the registers, the firmware must first read the
register:

IORD 11h

or

IORD 12h

Any write to these registers by the firmware should be done
in a loop where read and a compare follows the write to en-
sure that the data was written to the register. For instance, to
write the value ‘mode’ to the endpoint 0 Mode register:

IORD 12h ; unlock the EP0 counter register

loop:

MOV A, mode

IOWR 12h

IORD 12h

CMP A, mode

JNZ loop

Firmware Considerations for USB Microcontrollers

9

Endpoints 1 and 2

The endpoint 1 FIFO is located from RAM address F0h to
F7h, and the endpoint 2 FIFO is located from E8h to EFh.
Both of these endpoints, unlike the CY7C630/1/2xx, can be
set up as either IN or OUT interrupt endpoints (however, the
USB Specification 1.0 only defines an IN interrupt endpoint).
Interrupts can be generated to the CPU when data is received
in or transmitted from the endpoint FIFO. Interrupt vector 5
(ROM address 000Ah) should contain a JMP EP1_ISR in-
struction, where EP1_ISR is the beginning address of the
endpoint 1 interrupt service routine. Interrupt vector 6 (ROM
address 000Ch) should contain a JMP EP2_ISR instruction,
where EP2_ISR is the beginning address of the endpoint 2
interrupt service routine. To enable endpoint 1 or 2 interrupts,
bit 1 or 2 of the USB Endpoint Interrupt Enable Register
(0x21) should be set to 1. This should be done after receiving
a Set Configuration control request from the host that selects
a configuration which enables either of these endpoints. The
USB Endpoint 1 Mode register is 0x14, and the Endpoint 1
Counter register is 0x13. The USB Endpoint 2 Mode register
is 0x16, and the Endpoint 2 Counter register is 0x15. There
is no write lock problem with these registers (as with endpoint
0).

USB Communication Routines for CY7C630/1/2xx

The following firmware routines describe how to use the end-
points in the CY7C630/1/2xx to communicate with the USB
host. The routines are:

• Endpoint 0 ISR

• Control Read

• Control Write

• No Data Control

• Endpoint 1 ISR

• Send EP1 Data

Endpoint 0 ISR

;**

; Interrupt handler: endpoint_zero

; Purpose: This interrupt routine handles the

; specially reserved control endpoint 0 and

; parses SETUP packets by calling the

; ParseSetup routine (not shown). The

; ParseSetup routine calls the Control_read,

; Control_write, or No_data_control routines

; to handle the subsequent IN or OUT packets

; appropriately.

;

; This routine is primarily responsible for

; enumeration and configuration of the

; hardware.

;**

EP0_ISR:

push A ; save accumulator on stack

; load RX status register into A

iord USB_EP0_RX_Status ; (0x14)

; make sure SETUP packet received

; otherwise ignore interrupt

and A, 01h

jz ep0_continue

; load RX status register into A

iord USB_EP0_TX_Config ; (0x10)

; make sure setup data is valid

; otherwise ignore interrupt

and A, 10h

jnz ep0_continue

; load RX status register into A

iord USB_EP0_TX_Config ; (0x10)

; make sure we received 10 bytes

; (8 + 2 CRC), otherwise ignore

; interrupt

and A, F0h

cmp A, A0h

jnz ep0_continue

; disable endpoint zero interrupts

; so that subsequent packets don’t

; cause interrupt nesting

mov A,[interrupt_mask]

and A, 0F7h

mov [interrupt_mask], A

iowr Global_Interrupt ; (0x20)

; execute the ParseSetup routine to

; determine which control request was

; sent and handle it appropriately

call ParseSetup

; re-enable endpoint zero interrupts

; in the interrupt_mask variable

mov A, [interrupt_mask]

or A, 08h

mov [interrupt_mask], A

ep0_continue:

; enable interrupts, pop A, and exit

mov A, [interrupt_mask]

ipret Global_Interrupt

Firmware Considerations for USB Microcontrollers

10

Control Read Routine

;**

; Function: Control_read

; Purpose: Performs the control read

; operation as defined by the USB

; specification: SETUP-IN-IN-IN...OUT

; It is used to send descriptors to the USB

; host.

;

; data_start: must be set to the descriptor

; info as an offset from the beginning of the

; control_read_table (ROM table)

;

; data_count: must be set to the size of the

; descriptor

;

; premature_setup: set to 1 if a SETUP

; was received by the host during the

; time that we were in this routine.

;**

Control_read:

push A ; save A on stack

push X ; save X on stack

mov A, 00h ; clear data 0/1 bit

; save data toggle setting

mov [endp0_data_toggle], A

control_read_data_stage:

mov X, 00h

mov A, 00h

mov [loop_counter], A

;clear setup bit

iowr USB_EP0_RX_Status ; (0x14)

; check setup bit

iord USB_EP0_RX_Status

and A, 01h

; if not cleared, another setup

; has arrived. Set premature flag and

; exit ISR

jnz control_read_premature_setup

; set StatusOuts bit so that we STALL

; invalid Status OUTs

mov A, 08h

iowr USB_Status_Control ; (0x13)

mov A, [data_count]

cmp A, 00h

jz control_read_status_stage

; loop to load data into the FIFO

FIFO_load_loop:

mov A, [data_start]

index control_read_table

; load FIFO buffer

mov [X + endpoint_0], A

inc [data_start]

inc X

inc [loop_counter]

dec [data_count]

; exit if descriptor is done

jz FIFO_load_done

; or exit if 8 bytes sent

mov A, [loop_counter]

cmp A, 08h

jnz FIFO_load_loop

FIFO_load_done:

; check setup bit

iord USB_EP0_RX_Status

and A, 01h

; if not cleared, another setup

; has arrived. Set flag and exit ISR

jnz control_read_premature_setup

; perform data toggle

mov A, [endp0_data_toggle]

xor A, 40h

mov [endp0_data_toggle], A

; enable data response to IN packets

or A, 80h

; write number of bytes to send

or A, [loop_counter]

iowr USB_EP0_TX_Config ; (0x10)

; wait for the data to be transferred

wait_control_read:

iord USB_EP0_TX_Config

and A, 80h

jz control_read_data_stage

; check if OUT or SETUP was sent by

; the host

iord USB_EP0_RX_Status

and A, 01h

Firmware Considerations for USB Microcontrollers

11

; set flag and exit if SETUP

jnz control_read_premature_setup

iord USB_EP0_RX_Status

and A, 02h

; exit if OUT

jnz done_control_read

jmp wait_control_read

; keep looping until we get the Status OUT

; or another SETUP

control_read_status_stage:

; check if OUT or SETUP was sent by

; the host

iord USB_EP0_RX_Status

and A, 01h

; set flag and exit if SETUP

jnz control_read_premature_setup

iord USB_EP0_RX_Status

and A, 02h

; exit if OUT

jnz done_control_read

jmp control_read_status_stage

control_read_premature_setup:

mov A, 1 ; set flag to true

mov [premature_setup], A

done_control_read:

pop X ; restore X from stack

pop A ; restore A from stack

ret ; exit subroutine

Control Write Routine

;**

; Function: Control_write

; Purpose: Performs the control write

; operation as defined by the USB

; specification: SETUP-OUT-IN

; This routine is set up to receive

; 1 data packet (8 bytes) only (i.e.,

; it does not handle multiple OUTs).

; The data_ok flag is set to 1 (true) if the

; received data is valid, otherwise it is

; set to 0 (false).

; This routine waits until the status

; stage IN packet is sent by the host,

; but will NAK it. The caller of this

; routine should call the No_data_control

; routine after it has processed

; the incoming data to complete the

; handshake.

;

; premature_setup: set to 1 if a SETUP

; was received by the host during the

; time that we were in this routine.

;**

Control_write:

push A ; save A on stack

;clear setup bit

iowr USB_EP0_RX_Status ; (0x14)

mov A, 0 ; clear data_ok flag

mov [data_ok], A

; check setup bit

iord USB_EP0_RX_Status

and A, 01h

; if not cleared, another setup

; has arrived. Set flag and exit ISR

jnz control_write_premature_setup

; enable OUT data to be written to

; FIFO

mov A, 10h ; set Enable Outs bit to 1

iord USB_Status_Control

; wait for data

; keep looping until we get the OUT

wait_control_write:

iord USB_EP0_RX_Status

and A, 01h

; set flag and exit ISR if rec’d SETUP

jnz control_write_premature_setup

iord USB_EP0_RX_Status

and A, 02h ; check for OUT packet

jz wait_control_write

check_out_data:

iord USB_EP0_RX_Status

; make sure we received 10 bytes

and A, F0h

cmp A, A0h

jnz send_stall

; clear RX register

Firmware Considerations for USB Microcontrollers

12

iowr USB_EP0_RX_status

iord USB_EP0_TX_Config

; make sure data is valid

and A, 10h

; ready to move into status stage

jz control_write_status_stage

; keep looping

jmp wait_control_write

; wait until Status Stage IN is received

control_write_status_stage:

iord USB_EP0_RX_Status

and A, 01h

; set flag and exit if SETUP received

jnz control_write_premature_setup

iord USB_EP0_RX_Status

; if OUT received, then grab new data

and A, 02h

jnz check_out_data ; go check OUT data

iord USB_EP0_RX_Status

and A, 04h ; check IN bit

jz control_write_status_stage

; host is sending Status IN, but

; don’t handshake now - let

; No_data_control routine do this

mov A, 0

; stop responding to OUTs

iowr USB_Status_Control

; set data ok flag to true so that

; calling routine can use the data

mov A, 1

mov [data_ok], A

jmp done_control_write

send_stall: ; STALL IN / OUT

mov A, 0 ; clear reg. 0x13

iowr USB_Status_Control

mov A, 20h ; set STALL bit in reg. 0x10

iowr USB_EP0_TX_Config

; set data ok flag to false so that

; calling routine doesn’t use the

; bad data

mov A, 0

mov [data_ok], A

jmp done_control_write

control_write_premature_setup:

mov A, 1 ; set flag to true

mov [premature_setup], A

; we’re done

done_control_write:

pop A ; restore A from stack

ret ; exit subroutine

No Data Control Routine

;**

; Function: No_data_control

; Purpose: Performs the no data control

; operation as defined by the USB

; specification: SETUP-IN

; This routine completes the handshake for

; the Status Stage IN by sending a DATA1

; packet with 0 bytes of data.

;

; premature_setup: set to 1 if a SETUP

; was received by the host during the

; time that we were in this routine.

;**

No_data_control:

; clear the RX status register

iowr USB_EP0_RX_Status

; set up TX register for DATA1 PID and

;0 byte transfer

mov A, C0h

iowr USB_EP0_TX_Config

wait_nodata_sent:

iord USB_EP0_RX_Status

and A, 01h

; set flag and exit if we get SETUPs

jnz no_data_control_premature_setup

iord USB_EP0_TX_Config

; wait for the data to be transferred

and A, 80h

jnz wait_nodata_sent

jmp done_no_data_control

no_data_control_premature_setup:

mov A, 1 ; set flag to true

mov [premature_setup], A

Firmware Considerations for USB Microcontrollers

13

done_no_data_control:

ret ; return to caller

Endpoint 1 ISR

;**

; Interrupt handler: endpoint_one

; Purpose: This interrupt routine handles the

; interrupt endpoint 1. This interrupt

; happens every time a host sends an

; IN to endpoint 1. The data to send (NAK or

; data bytes) is already loaded, so this

; routine just prepares for the next packet

;**

EP1_ISR:

push A ; save accumulator on stack

push X ; save X on stack

iord USB_EP1_TX_Config

; return NAK when data is not ready

and A, 7Fh

xor A, 40h; flip data 0/1 bit

iowr USB_EP1_TX_Config

; clear endpoint 1 FIFO

mov X, 8

mov A, 0

ep1_fifo_clear:

mov [X + endpoint_1 - 1], A

dec X

jnz ep1_fifo_clear

; return from interrupt

pop X

mov A, [interrupt_mask]

ipret Global_Interrupt

Send Endpoint 1 Data Routine

;**

; Function: Send_EP1_Data

; Purpose: Sends 8 bytes from ep 1 FIFO

; to the host over the interrupt pipe.

; (Data must be loaded into FIFO before

; calling this routine.)

;**

Send_EP1_Data:

push A

iord USB_EP1_TX_Config

; keep the data 0/1 bit

and A, DataToggle

or A, 98h ; enable 8 byte transmission

iowr USB_EP1_TX_Config

; wait for host to send ACK

; while we wait, the EP1 interrupt

; will occur when ACK is received

wait_ep1_ack: ; wait for host to ACK

iord USB_EP1_TX_Config

and A, 80h

jnz wait_ep1_ack

pop A

ret ; exit subroutine

USB Communication Routines for CY7C634/5xx

The following firmware routines describe how to use the end-
points in the CY7C634/5xx to communicate with the USB
host. The routines are:

• USB Bus Reset ISR

• Endpoint 0 ISR

• Control Read

• Control Write

• No Data Control

• Endpoint 1 ISR

• Send Endpoint 1 Data

Additionally, there are some auxiliary functions for conve-
nience:

• Set EP0 Mode

• SendStall

USB Bus Reset ISR

;**

; Interrupt handler: USB Bus Reset

; Purpose: This interrupt routine handles the

; USB bus reset event.

;**

USB_Bus_Reset_ISR:

push A ; save accumulator on stack

; clear the Bus Reset bit in the

; Status & Control register

iord Status_Control ; (0xFF)

and A, DFh

iowr Status_Control

; enable one msec timer interrupt (bit

Firmware Considerations for USB Microcontrollers

14

; 2) and bus reset interrupt (bit 0)

mov A, 05h

iowr Global_Interrupt ; (0x20)

; enable endpoint zero interrupt only

mov A, 01h

iowr Endpoint_Interrupt ; (0x21)

; unlock EP0 Mode register

iord EP_A0_Mode ; (0x12)

; set EP0 mode to Ignore IN/OUT (0100)

; but accept SETUPs

mov A, 04h

iowr EP_A0_Mode

; enable device address 0

mov A, 80h

iowr USB_Device_Address ;(0x10)

mov A, 0 ; disable endpoint one

iowr EP_A1_Mode ; (0x14)

pop A ; restore accumulator from stack

reti ; return from interrupt

Endpoint 0 ISR

;**

; Interrupt handler: endpoint_zero

; Purpose: This interrupt routine handles the

; specially reserved control endpoint 0 and

; parses SETUP packets by calling the

; ParseSetup routine (not shown). The

; ParseSetup routine calls the Control_read,

; Control_write, or No_data_control routines

; to handle the subsequent IN or OUT packets

; appropriately.

;

; This routine is primarily responsible for

; enumeration and configuration of the

; hardware.

;**

USB_EP0_ISR:

push A ; save accumulator on stack

iord EP_A0_Mode ; (0x12)

; do nothing unless we received

; a SETUP token packet

and A, 80h

jz done_EP0

; check if data is valid

iord EP_A0_Counter ; (0x11)

and A, 40h

; otherwise STALL IN/OUT

jz stall_in_out

; make sure we received 10 data bytes

; (8 data bytes + 2 CRC bytes)

iord EP_A0_Counter

and A, 0Fh

cmp A, 0Ah

; otherwise STALL IN/OUT

jnz stall_in_out

; check if data toggle is 0

iord EP_A0_Counter

and A, 80h

; otherwise STALL IN/OUT

jnz stall_in_out

; unlock the mode register

iord EP_A0_Mode

ep0_clear_pid_bits:

; write same mode (NAK IN/OUT, 0001)

; to clear PID bits

mov A, 01h

iowr EP_A0_Mode

iord EP_A0_Mode

; make sure the write wasn't locked

; out

cmp A, 01h

jnz ep0_clear_pid_bits

; disable endpoint zero interrupt

iord Endpoint_Interrupt

and A, FEh

iowr Endpoint_Interrupt

ei ; enable other interrupts

call ParseSetup ; parse SETUP packet

; did we get a premature SETUP?

mov A, [premature_setup]

cmp A, 0

; no, then enable EP0 int and return

jz enable_ep0_interrupt

Firmware Considerations for USB Microcontrollers

15

mov A, 0

; yes, then clear flag and return

; (we'll get another interrupt for the

; new SETUP)

mov [premature_setup], A

jmp enable_ep0_interrupt

; accept SETUP, stall IN/OUT

stall_in_out:

call SendStall

jmp done_EP0

enable_ep0_interrupt:

di ; disable interrupts

; enable endpoint zero interrupt

iord Endpoint_Interrupt

or A, 01h

iowr Endpoint_Interrupt

done_EP0:

pop A ; restore accumulator from stack

; return from ISR (interrupts will be

; enabled)

reti

Set Endpoint 0 Mode Routine

;**

; Function: set_ep0_mode

; Purpose: Sets the endpoint 0 mode

; register (0x12) to the mode stored

; in the A register. This routine performs

; the unlocking of the register to ensure

; that the write to the register was

; successful.

;

; premature_setup is set to 1 if a SETUP

; was received by the host during the

; time that we were in this routine.

;**

set_ep0_mode:

mov [ep0mode], A

set_ep0_unlock:

mov A, [ep0mode]

iowr EP_A0_Mode

iord EP_A0_Mode

; confirm write was not locked

cmp A, [ep0mode]

jnz ep0_mode_check_setup

jmp done_set_ep0_mode

ep0_mode_check_setup:

; did we receive a premature SETUP?

and A, 80h

; no, then try to set mode again

jz set_ep0_unlock

; yes, then set flag and return

mov A, 1

mov [premature_setup], A

done_set_ep0_mode:

ret

SendStall Routine

;**

; Function: SendStall

; Purpose: This routine stores the

; Stall IN OUT mode (0011) into A and

; calls set_ep0_mode to store the value

; in the ep0 mode register. This will

; cause ep 0 to send STALLs to any IN or

; OUT packets received.

;**

SendStall:

push A

; set EP0 mode to Stall IN/OUT (0011)

mov A, 03h

call set_ep0_mode

pop A

ret

Control Read Routine

;**

; Function: Control_read

; Purpose: Performs the control read

; operation as defined by the USB

; specification: SETUP-IN-IN-IN...OUT

; It is used to send descriptors to the USB

; host.

;

; data_start: must be set to the descriptor

; info as an offset from the beginning of the

; control_read_table (ROM table)

Firmware Considerations for USB Microcontrollers

16

;

; data_count: must be set to the size of the

; descriptor

;

; premature_setup: set to 1 if a SETUP

; was received by the host during the

; time that we were in this routine.

;**

Control_read:

push A ; save A on stack

; copy first eight bytes to FIFO

call SendBuffer

; return if we received a premature

; SETUP

mov A, [premature_setup]

cmp A, 0

jnz done_control_read

; unlock Counter register

iord EP_A0_Counter

; set data 0/1 bit

mov A, 80h

; write correct byte count

or A, [byte_count]

mov [temp], A

control_read_unlock1:

mov A, [temp]

iowr EP_A0_Counter

; confirm write was unlocked

iord EP_A0_Counter

cmp A, [temp]

jz control_read_data_stage

; if we were locked out, check for

; premature SETUP

iord EP_A0_Mode

and A, 80h

jz control_read_unlock1

; we received premature SETUP

mov A, 1

; set flag, and return

mov [premature_setup], A

jmp done_control_read

control_read_data_stage:

; accept IN, SETUP, and Status OUT

; (ACK IN - STATUS OUT mode, 1111)

mov A, 0Fh

call set_ep0_mode

; return if we received a premature

; SETUP

mov A, [premature_setup]

cmp A, 0

jnz done_control_read

; wait for the data to be sent

wait_control_read:

iord EP_A0_Mode ; read mode register

; wait for one of the PID bits to be

; set

and A, F0h

jz wait_control_read

check_PID_received:

; check if Status OUT packet received

iord EP_A0_Mode

and A, 20h

jnz control_read_OUT_received

; check if we received a premature

; SETUP

iord EP_A0_Mode

and A, 80h

; no, then IN was received

jz control_read_IN_received

; yes, then set flag and return

mov A, 1

mov [premature_setup], A

jmp done_control_read

control_read_IN_received:

; make sure ACK was received

iord EP_A0_Mode

and A, 10h

jz wait_control_read

; have we sent all the data?

mov A, [data_count]

cmp A, 0

; no, then send the next data packet

jnz start_next_transfer

; we've sent all the data so host

; should send us Status OUT

Firmware Considerations for USB Microcontrollers

17

; accept SETUP/OUT, stall IN

; (Status OUT only mode, 0010)

mov A, 02h

call set_ep0_mode

; return if we received a premature

; SETUP

mov A, [premature_setup]

cmp A, 0

jnz done_control_read

; wait for the next packet

jmp wait_control_read

; start the next transfer

start_next_transfer:

call SendBuffer ; load the FIFO

; return if we received a premature

; SETUP

mov A, [premature_setup]

cmp A, 0

jnz done_control_read

; unlock Counter register

iord EP_A0_Counter

and A, 80h ; keep data 0/1 bit

; toggle the data 0/1 bit

xor A, 80h

; store the correct byte count

or A, [byte_count]

mov [temp], A

control_read_unlock2:

mov A, [temp]

; write the Counter register

iowr EP_A0_Counter

; confirm the write was not locked

iord EP_A0_Counter

cmp A, [temp]

jz control_read_data_stage

; if we were locked out, check for

; premature SETUP

iord EP_A0_Mode

and A, 80h

jz control_read_unlock2

; we received premature SETUP

; set flag, and return

mov A, 1

mov [premature_setup], A

jmp done_control_read

; Status OUT received, so set EP0 mode to

; STATUSOUTONLY mode (0010)

control_read_OUT_received:

; accept SETUP/OUT, stall IN

mov A, 02h

call set_ep0_mode

done_control_read:

pop A ; restore A

ret ; return to caller

SendBuffer Routine

;**

; Function: SendBuffer

; Purpose: This routine is called by the

; Control_read routine to load the EP0

; FIFO with 8 bytes of data from the

; ROM table. It uses data_count and

; data_start as defined in Control_read.

;

; premature_setup: set to 1 if a SETUP

; was received by the host during the

; time that we were in this routine.

;**

SendBuffer:

push A ; save A on stack

; clear the PID bit in Mode

; accept SETUP, NAK IN/OUT (mode 0001)

mov A, 01h

call set_ep0_mode

; return if we received a premature

; SETUP

mov A, [premature_setup]

cmp A, 0

jnz done_sendbuffer

push X ; save X on stack

mov A, 0 ; load count into A

sendloop:

swap A,X ; move count into X

Firmware Considerations for USB Microcontrollers

18

; load ROM index into A

mov A, [data_start]

; get the ROM byte

index control_read_table

; save the byte in FIFO

mov [X + endpoint_0], A

; increment ROM index

inc [data_start]

inc X ; increment the count in X

swap A,X ; move count to A

cmp A,8 ; compare count to 8

jnz sendloop ; keep copying

; default to 8-bytes

mov [byte_count], A

; update byte counter

mov A, [data_count]

sub A, 8 ; subtract 8-bytes sent

jnc doneSend

; update the byte count in memory

mov A, [data_count]

mov [byte_count], A

mov A,0 ; done

doneSend:

; update byte counter

mov [data_count], A

pop X ; restore X from stack

done_sendbuffer:

pop A ; restore A

ret ; return to caller

Control Write Routine

;**

; Function: Control_write

; Purpose: Performs the control write

; operation as defined by the USB

; specification: SETUP-OUT-IN

; This routine is set up to receive

; 1 data packet (8 bytes) only (i.e.,

; it does not handle multiple OUTs).

; The data_ok flag is set to 1 (true) if the

; received data is valid, otherwise it is

; set to 0 (false).

; This routine waits until the status

; stage IN packet is sent by the host,

; but will NAK it. The caller of this

; routine should call the No_data_control

; routine after it has processed

; the incoming data to complete the

; handshake.

;

; premature_setup: set to 1 if a SETUP

; was received by the host during the

; time that we were in this routine.

;**

Control_write:

push A ; save A on stack

mov A, 0 ; clear data_ok flag

mov [data_ok], A

; accept OUT, enable TX0 IN

; ACK OUT STATUS IN mode (1011)

mov A, 0Bh

call set_ep0_mode

; return if we received a premature

; SETUP

mov A, [premature_setup]

cmp A, 0

jnz done_control_write

; wait until we get the OUT byte

wait_control_write_OUT:

iord EP_A0_Mode ; read mode register

; did we get the OUT packet?

and A, 20h

jz control_write_check_OUT

iord EP_A0_Mode ; read mode register

; did we receive premature SETUP?

and A, 80h

jz wait_control_write_OUT

; yes, then set flag and return

mov A, 1

mov [premature_setup], A

jmp done_control_write

; we received the OUT byte, make sure the data

; is valid

control_write_check_OUT:

; read Mode register

iord EP_A0_Mode

Firmware Considerations for USB Microcontrollers

19

and A, 10h; did we ACK the OUT data?

; since we ignored the data, the host

; will try to send it again

; jump back to the beginning

jz Control_write

; read counter register

iord EP_A0_Counter

and A, 0Fh

; is count 10 (8 data + 2 CRC)?

cmp A, 0Ah

; we ACK’d the data (so data is valid)

; but we did not receive the right #

; of bytes - send STALL to any further

; INs and OUTs

jnz control_write_send_stall

; accept SETUP, NAK IN/OUT

; NAK IN OUT mode (0001)

mov A, 01h

call set_ep0_mode

; return if we received a premature

; SETUP

mov A, [premature_setup]

cmp A, 0

jnz done_control_write

; wait until host sends us Status IN

control_write_wait_IN:

iord EP_A0_Mode ; read mode register

and A, 20h ; did we get an OUT?

; if so, jump back to beginning to get
new OUT byte

jnz Control_write

iord EP_A0_Mode ; read mode register

and A, 40h ;did we get the Status IN?

; if so, return so that we can process

; the OUT byte before No_data_control

; responds to the Status IN

jnz control_write_status_in

iord EP_A0_Mode ; read mode register

; did we get a premature SETUP?

and A, 80h

; no, then wait for Status IN

jz control_write_wait_IN

mov A, 1 ; yes, set flag and return

mov [premature_setup], A

jmp done_control_write

control_write_send_stall:

; set data ok flag to false so that

; calling routine does not use the

; bad data

mov A, 0

mov [data_ok], A

call SendStall

jmp done_control_write

control_write_status_in:

; set data ok flag to true so that

; calling routine knows data is good

mov A, 1

mov [data_ok], A

done_control_write:

pop A

ret ; return

No Data Control Routine

;**

; Function: No_data_control

; Purpose: Performs the no data control

; operation as defined by the USB

; specification: SETUP-IN

; This routine completes the handshake for

; the Status Stage IN by sending a DATA1

; packet with 0 bytes of data.

;

; premature_setup: set to 1 if a SETUP

; was received by the host during the

; time that we were in this routine.

;**

No_data_control:

push A

; put EP0 in Status In Only mode

; (0110) to transmit zero-length

; data packet to Status IN

mov A, 06h

call set_ep0_mode

Firmware Considerations for USB Microcontrollers

20

; return if we received a premature

; SETUP

mov A, [premature_setup]

cmp A, 0

jnz done_nodata_control

; wait for the zero-length transfer to complete

wait_nodata_sent:

iord EP_A0_Mode ; read mode register

; did we receive premature SETUP?

and A, 80h

jz check_nodata_ack

; yes, then set flag and return

mov A, 1

mov [premature_setup], A

jmp done_nodata_control

check_nodata_ack:

iord EP_A0_Mode ; read mode register

and A, 10h ; wait for ACK bit high

jz wait_nodata_sent

; set mode to Ignore IN/Out (0100)

mov A, 04h ;still accept SETUPs

call set_ep0_mode

done_nodata_control:

pop A

ret ; return

Endpoint 1 ISR

;**

; Interrupt handler: endpoint_one

; Purpose: This interrupt routine handles the

; interrupt endpoint 1. This interrupt

; happens every time a host sends an

; IN to endpoint 1. The data to send (NAK or

; data bytes) is already loaded, so this

; routine just prepares for the next packet.

;

; A similar interrupt handler can be

; written for endpoint 2 (just use

; the mode register 0x16 and counter

; register 0x15).

;**

USB_EP1_ISR:

push A ; save accumulator on stack

; test whether ACK bit is set

; to know that the last data

; transmission was successful

iord EP_A1_Mode

and A, 10h

; do nothing if we don't have an ACK

; bit

jz doneEP1

iord EP_A1_Counter

; flip data 0/1 bit after

; a successful data transfer

xor A, 80h

iowr EP_A1_Counter

push X

mov X,7 ; load loop counter

mov A,0

copyloop:

; clear the endpoint buffer

mov [X + endpoint_1], A

dec X

jnc copyloop

pop X

doneEP1:

pop A ; restore accumulator from stack

reti ; return from interrupt

Send EP1 Data Routine

;**

; Function: Send_EP1_Data

; Purpose: Sends 8 bytes from ep 1 FIFO

; to the host over the interrupt pipe.

; (Data must be loaded into FIFO before

; calling this routine.)

;

; A similar interrupt handler can be

; written for endpoint 2 (just use

; the mode register 0x16 and counter

; register 0x15).

;;**

Send_EP1_Data:

Firmware Considerations for USB Microcontrollers

© Cypress Semiconductor Corporation, 1998. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.

push A ; save accumulator on stack

iord EP_A1_Counter ; (0x13)

and A, 80h ; keep data toggle setting

or A, 8h ; packet size

iowr EP_A1_Counter

; set EP1 mode to ACKIN IN (1101)

; to enable packet transmission when

; an IN is received from the host

mov A, 0Dh

iowr EP_A1_Mode ; (0x14)

wait_data_sent:

; wait for data acknowledge (ACK bit

; set) before loading register again

iord EP_A1_Mode

and A, 10h

jz wait_data_sent

; set endpoint 1 mode to NAKIN (1100)

; also clears ACK bit

mov A, 0Ch

iowr EP_A1_Mode

pop A ; restore accumulator

ret ; return

Conclusion
The CY7C63xxx family of microcontrollers provide a flexible,
low-cost solution for the development of low-speed USB mi-
crocontrollers. With the availability of good development
tools, such as the CYASM assembler, the CY3650/3651 De-
velopment Kits, and the information contained in this docu-
ment, the task of firmware development is greatly simplified.

