
Programming a 24LC00 EEPROM using the EZ-USB I2C Port

Introduction
The Cypress EZ-USB family contains a general-purpose I2C
interface through which the 8051 accesses standard I2C de-
vices connected to the SCL and SDA pins. In normal opera-
tion, a small EEPROM connected to the I2C port supplies
vendor-specific ID information to the operating system to en-
able it to load the proper software driver associated with the
device. These ID tags, called Vendor ID (VID), Product ID
(PID), and Device ID (DID), occupy the first seven bytes of the
EEPROM, as shown in Table 1 below.

The EZ-USB chip uses the constant 0xB0 in the first byte to
identify the subsequent bytes as VID/PID/DID information.

An excellent choice for the EEPROM is the Microchip
24LC00-OT, a 16-byte serial EEPROM in a 5-lead SOT-23
package. This device is similar to the widely available 24 se-
ries of EEPROMS such as the 24LC01 (128 bytes) and the
24LC02. The “LC” designation denotes low-voltage operation
(2.5–6.0 volts) making the part ideal for a 3.3V USB periph-
eral. At this writing the Microchip 24LC00 is the only version
available in the very small SOT-23 package.

The Microchip 24LC00 is used on the Cypress EZ-USB De-
velopment Board. It is provided in an 8-pin socketed DIP
package so that other EEPROM types may be plugged in for
study and debugging.

Two subtle differences between the 24LC00 and the other
EEPROMS in the family (lack of address pins and lack of
‘page write’) are mentioned in this note. This note concludes
with a set of general-purpose 8051 subroutines that perform
byte reads and writes to the 24LC00 on the EZ-USB Devel-
opment Board. The routines assume the lowest common
functionality in the 24LC family, making them usable for any
of the family devices (’00, ’01, and ’02).

EEPROM Details
The 24LC00 responds to the I2C slave address 1010xxxd,
where “d” is the direction bit (d=1 for read, d=0 for write). The
‘xxx’ indicates that the device responds to all eight slave ad-

dresses between 1010 000 and 1010 111. This is due to the
fact that the 24LC00 lacks the A[2..0] pins found on the
24LC01 and 24LC02 devices.

The 24LC00 contains an internal address counter that must
be written before reading or writing an EEPROM byte. This
address counter automatically increments for sequential
EEPROM byte reads, but it does not increment for sequential
byte writes. This is the major difference between the 24LC00
and the 24LC01/02 devices. The 24LC01/02 devices also
have a “page write” mechanism that allows loading eight
bytes at a time, where each load automatically increments the
internal address counter. By writing the example routines to
explicitly write an address before each EEPROM byte write,
the code is compatible with all three part types.

Although the 24LC series is called ‘electrically erasable”,
there is no explicit erase operation. Writing a byte first erases
the byte, then reprograms it.

An EEPROM write operation consists of sending the bytes
shown in Table 2 to the 24LC00.

An I2C START condition precedes the first byte, and a STOP
condition follows the final byte. The STOP condition initiates
the erase/write cycle, which takes a maximum of 4 millisec-
onds to complete in the 24LC00.

The 8051 checks for completion of an erase/write cycle by
repeatedly sending “byte write” commands (byte 1 in Table 2)
to the EEPROM, and checking the ACK bit. During the
EEPROM programming cycle the EEPROM responds with
ACK=0 (not acknowledge) on the I2C bus. When the program-
ming cycle is complete it responds with ACK=1 (acknowl-
edge) on the I2C bus. (These two conditions are shown in
Figure 3.) Note that the I2C bus polarities are the opposite
sense of the ACK bit in the I2CS register (I2CS.1), so the
8051 polling routine waits while I2CS.1=0 and exits when
I2CS.1=1.

I2C Data Transfers
The 8051 communicates with the I2C bus using two registers,
shown below:

Table 1. Contents of 16-byte 24LC00 EEPROM

EEPROM Address Value

0 0xB0

1 VID(L)

2 VID(H)

3 PID(L)

4 PID(H)

5 DID(L)

6 DID(H)

7 available

Table 2. 24LC00 Write Operation

Byte Value Meaning

1 10100000 Command byte—Write

2 0000aaaa EEPROM address to write

3 Dddddddd Data to write
Cypress Semiconductor Corporation • 3901 North First Street • San Jose • CA 95134 • 408-943-2600
February 2, 2000

Programming a 24LC00 EEPROM using the EZ-USB I2C Port
The 8051 initiates a transfer by setting the START bit
(I2CS.7), and then writing a command byte to the I2DAT reg-
ister. When the I2C controller is ready, the 8051 then writes or
reads data to/from I2DAT. Finally, the 8051 sets the STOP bit
to terminate the transaction.

The I2CS register bits operate as follows:

DONE

When the 8051 initiates an I2C transfer, the DONE bit
(I2CS.0) goes LOW, and returns HIGH when the transfer
completes and the EZ-USB I2C controller is ready. The DONE
bit is automatically cleared when the 8051 reads or writes
I2DAT.

STOP

The 8051 terminates an I2C transfer by setting STOP=1. This
bit stays HIGH until the I2C controller finishes sending the
STOP condition on the I2C bus, at which time it clears the
STOP bit. Completion of the STOP condition on the I2C bus
has no effect on the DONE bit.

For an I2C read operation, the 8051 must read the last data
byte from I2DAT before the STOP condition completes (within
about 11 microseconds). Therefore the 8051 code should
read the I2DAT register immediately after setting the STOP
bit. It is therefore good practice to begin every I2C transfer
routine with a check for STOP=0, indicating that any previous
STOP condition has completed and the I2C controller is “lis-
tening.”

LastRD

The 8051 sets the LASTRD bit (I2CS.5) before clocking in the
last byte in a read operation. This instructs the EZ-USB I2C
controller not to generate an ACK for the last transfer. The
lack of an ACK from the I2C master (the EZ-USB I2C control-
ler) signals the I2C peripheral to stop sending.

ACK, BERR

After every transfer (when DONE goes HIGH), two status bits
indicate if the transfer was acknowledged (ACK, I2CS.1) and
if another I2C device interfered by driving the bus at the same
time as the EZ-USB controller (BERR, I2CS.2). The example
code checks the ACK bit for completion of an erase/program
cycle. For simplicity, and because no other I2C device is
present on the EZ-USB Development board, the example
code does not check the BERR bit.

ID1–ID0

These bits, which indicate the EEPROM type detected by the
EZ-USB I2C boot loader, may be safely ignored for these ex-
amples. For reference, Chapter 4 of the EZ-USB Technical
Reference Manual describes the meaning of these read-only
bits.

Code Description
The code listing at the end of this note contains several sub-
routines:

1. Reset EEPROM address to 0000 (‘reset_address’, line
218).

2. Read first eight bytes from the EEPROM (‘read8_eeprom’,
line 63). The 8051 code stores these bytes in internal reg-
isters at 0x80-0x87.

3. Write the sixteen EEPROM bytes with the data in 8051
internal registers at 0x80-0x8F (‘write16_eeprom’, line
125).

4. Test the above routines (‘test’, line 39), as follows. Call (1)
to reset the EEPROM address pointer to zero, call routine
(2) to read the first eight EEPROM bytes into 0x80-0x87,
fill the eight bytes at 0x88-0x8F with the values
8,7,6,5,4,3,2,1, and finally call (3) to write the EEPROM
using the sixteen bytes at 0x80-0x8F.

The result is an EEPROM that contains the first eight bytes
previously stored in the EEPROM, and the count 8->1 in the
last eight bytes. It should be easy to modify the example test
routine to write any desired data.

Programming the LastRD Bit
The LastRD bit in I2CS.5 instructs the EZ-USB I2C controller
to float the SDA line at ‘ACK’ time (the ninth SCL of the byte
transfer) to alert the slave (EEPROM) to stop sending. Look-
ing at the code, it may appear that the LastRD bit is actually
set two bytes before the last transfer, since the code se-
quence to read eight bytes is as follows:

1. Perform a dummy read of I2DAT to send out the first nine
SCL pulses which clock the first byte into the I2DAT
register.

2. Read the first six bytes from I2DAT.

3. Set the LastRD bit.

4. Read the seventh byte from I2DAT.

I2CS I2C Control and Status 7FA5

b7 b6 b5 b4 b3 b2 b1 b0

START STOP LASTRD ID1 ID0 BERR ACK DONE

R/W R/W R/W R R R R R

0 0 0 x x 0 0 0

I2DAT I2C Data 7FA6

b7 b6 b5 b4 b3 b2 b1 b0

D7 D6 D5 D4 D3 D2 D1 D0

R/W R/W R/W R/W R/W R/W R/W R/W

x x x x x x x x
2

Programming a 24LC00 EEPROM using the EZ-USB I2C Port
5. Read the eighth byte from I2DAT.

6. Set STOP=1.

The reason the LastRD is set to one before reading the sev-
enth, and not the eighth byte, is that the 8051 must set
LastRD=1 before the last nine clock pulses are sent out by
the EZ-USB controller. Therefore LastRD must be set to 1
before the 8051 reads I2DAT to retrieve the second-to-last
byte (byte 7). This is illustrated in Figure 1.

Waveforms
Figure 2 illustrates the sixteen EEPROM byte write opera-
tions. Trace 2 is the port pin PORTA.0, which is programmed
to be HI while a write cycle is in progress (set HI in lines
174–176, and LO in lines 198–200). The sixteen byte write
times can clearly be seen in trace 2. Note that the 16-byte
write takes less than 40 milliseconds. Figure 3 (next page)
shows the same data magnified to show the last write com-

mand byte that returns a non-ACK (EEPROM still busy writ-
ing) followed by the command byte that returns ACK to indi-
cate that the write cycle has finished.

The 8051 sends the command byte “10100000” in both trans-
fers in Figure 3. In the first transfer the 24LC00 sends ACK=1
(not-acknowledge) to indicate that a write cycle is still in
progress. In the second transfer it sends ACK=0 (acknowl-
edge) to indicate that the write cycle has completed and an-
other byte can be erased/written.

ackD7D6 D5 D4D3 D2 D1 D0 ackD7 D6 D5 D4 D3 D2 D1D0 D7 D6 D5 D4 D3 D2 D1 D0 floatSDA

SCL

S
T
O
Pclock in byte 6 clock in byte 7 clock in byte 8

Read byte 6 in I2DAT, which
initiates next 9 SCL pulses

Read byte 7 in I2DAT, which
initiates next 9 SCL pulses

Read byte 8
in I2DAT

Set LastRD=1

Figure 1. The 8051 Sets LastRD=1 Before Reading the Second-to-last byte from I2DAT

Figure 2. Scope Traces for Listing A
3

Programming a 24LC00 EEPROM using the EZ-USB I2C Port
Listing
1 ; --
2 ; eeprom.A51 10-7-98 LTH
3 ; Subroutines to read and write the 24LC00 attached to the AN2131Q on the EZ-USB
4 ; Development Board.
5 ;
6 ; reset_address send 0000 to the EEPROM address counter
7 ; read8_eeprom read the first 8 bytes from the (16-byte) 24LC00, stash
8 ; data in internal register memory 0x80-0x87.
9 ; write16_eeprom write 16 bytes at internal register memory 0x80-0x8F to
10 ; the 24LC00
11 ;
12 ; test read first 8 EEPROM bytes at 0x80-0x87, write new data to
13 ; 0x88-0x8F, then re-program the EEPROM with sixteen bytes at
14 ; 0x80-0x8F. The EEPROM then contains the previous
15 ; first 8 bytes (the VID/PID/DID info needed for correct EZ-USB
16 ; Development Board operation) plus 'user' data in the last
17 ; eight bytes.
18 ; --
19 $NOMOD51 ; disable predefined 8051 registers
20 $nolist
21 $INCLUDE (REG320.INC); *** for the integrated 8051 core
22 $include (ezregs.inc); EZ-USB register assignments
23 $list
24 ;
25 NAME eeprom
26 ;
27 ISEG AT 60H
28 stack: ds 20
29 ;
30 DSEG at 20H ; start of bit-addressable regs
31 EEaddr: ds 1
32 EEdata: ds 1
33 ;
34 CSEG AT 0
35 ljmp test
36 ; ---
37 org 200h
38 ; ---

Figure 3. Two Command Bytes Indicate ‘busy’ and ‘done’.
4

Programming a 24LC00 EEPROM using the EZ-USB I2C Port
39 test: mov SP,#STACK-1 ; set stack
40 ;
41 mov dptr,#OEA ; enable PORTA.0 for output
42 mov a,#1 ; bit 0
43 movx @dptr,a ; (use as scope 'eeprom busy' indication)
44 ;
45 call read8_eeprom ; put 16 bytes at idata 80H-8FH
46 ;
47 mov r0,#88H ; modify the last 8 bytes (88-8FH)
48 mov r7,#8
49 modify: mov a,r7
50 mov @r0,a ; write values 8->1
51 inc r0
52 djnz r7,modify
53 ;
54 call write16_eeprom
55 spin: sjmp spin ; hang here
56 ;
57
58 ;--
59 ; Read the first eight bytes from the 24LC00 EEPROM
60 ;--
61 ; 0. Make sure STOP is not in progress
62 ;
63 read8_eeprom:call stop_check
64 ;
65 ; 1. Set EEPROM address pointer to 0000
66 ;
67 call reset_address ; set eeprom address pointer to 0
68 call stop_check
69 ;
70 ; 2. Set the START bit
71 ;
72 mov dptr,#I2CS
73 mov a,#10000000b ; b7=start bit
74 movx @dptr,a
75 ;
76 ; 3. Write the EEPROM address 1010 000 and indicate read operation (b0=1)
77 ;
78 mov dptr,#I2DAT
79 mov a,#10100001b
80 movx @dptr,a
81 call wait_done
82 ;
83 ; 4. Read first eight bytes
84 ;
85 mov dptr,#I2DAT
86 movx a,@dptr ; dummy read to generate first 9 SCL pulses
87 call wait_done
88 ;
89 mov r7,#6 ; read first 6 bytes
90 mov r0,#80H ; deposite the bytes here
91 rdloop: mov dptr,#I2DAT
92 movx a,@dptr
93 mov @r0,a
94 inc r0
95 call wait_done
96 djnz r7,rdloop
97 ;
98 ; 5. Set the LastRd bit and read 7th and 8th bytes
99 ;
100 mov dptr,#I2CS
101 mov a,#00100000b ; b5=LastRD
102 movx @dptr,a
5

Programming a 24LC00 EEPROM using the EZ-USB I2C Port
103 mov dptr,#I2DAT
104 movx a,@dptr ; read the 7th byte
105 mov @r0,a ; save it
106 inc r0 ; bump dest pointer
107 call wait_done
108 ;
109 mov dptr,#I2DAT
110 movx a,@dptr ; read the 8th byte
111 mov @r0,a ; save it
112 ;
113 ; 6. Set the STOP bit
114 ;
115 mov dptr,#I2CS
116 mov a,#01000000b
117 movx @dptr,a
118 ret
119 ;
120
121 ; --
122 ; Write EEPROM with 16 bytes at internal register RAM 0x80-0x8F.
123 ; --
124 ;
125 write16_eeprom:mov r0,#80H ; source data pointer
126 mov EEaddr,#0 ; starting address in eeprom
127 mov r7,#16 ; pass count
128 weloop: mov EEdata,@r0
129 inc r0
130 call write_eeprom_byte
131 inc EEaddr
132 djnz r7,weloop
133 ret
134 ;
135 ; --
136 ; Write an eeprom byte. Data in EEdata, addr in EEaddr.
137 ; --
138 write_eeprom_byte:
139 ;
140 ; 0. Make sure STOP is not in progress
141 ;
142 call stop_check
143 ;
144 ; 1. Set the START bit
145 ;
146 mov dptr,#I2CS
147 mov a,#10000000b ; b7=start bit
148 movx @dptr,a
149 ;
150 ; 2. Write the EEPROM address 1010 000 and indicate write operation (b0=0)
151 ;
152 mov dptr,#I2DAT
153 mov a,#10100000b
154 movx @dptr,a
155 call wait_done
156 ;
157 ; 3. Send the EEPROM 'word address'
158 ;
159 wloop: mov dptr,#I2DAT
160 mov a,EEaddr ; address pointer
161 movx @dptr,a ; send command byte
162 call wait_done
163 ;
164 mov dptr,#I2DAT
165 mov a,EEdata ; send eeprom data byte
166 movx @dptr,a
6

Programming a 24LC00 EEPROM using the EZ-USB I2C Port
167 call wait_done
168 ;
169 mov dptr,#I2CS ; send STOP. This initiates an internal write cycle
170 mov a,#01000000b
171 movx @dptr,a
172 call stop_check ; wait for completion of STOP
173 ;
174 mov dptr,#OUTA ; for the scope
175 mov a,#1
176 movx @dptr,a ; hi means waiting to finish write cycle
177 ;
178 ; Wait for the erase/write cycle to complete. This is done by sending a 'write' command
179 ; byte and checking the ACK bit. The EEPROM will not respond (ACK) while a write cycle
180 ; is in progress.
181 ;
182 write_wait:mov dptr,#I2CS ; send START
183 mov a,#10000000b ; b7=start bit
184 movx @dptr,a
185 mov dptr,#I2DAT ; write a command byte
186 mov a,#10100000b ; eeprom write
187 movx @dptr,a
188 call wait_done
189 mov dptr,#I2CS ; send STOP
190 mov a,#01000000b
191 movx @dptr,a
192 call stop_check ; wait for completion of STOP
193 ;
194 mov dptr,#I2CS ; check ACK bit
195 movx a,@dptr
196 jnb acc.1,write_wait; keep trying until ACK=1
197 ;
198 mov dptr,#OUTA ; done waiting--scope signal LO
199 mov a,#0
200 movx @dptr,a
201 ;
202 ret
203 ;
204 ;----------subroutines-------------
205 ;
206 stop_check:mov dptr,#I2CS ; check the STOP bit in I2CS
207 stck: movx a,@dptr
208 jb acc.6,stck
209 ret
210 ;
211 wait_done: mov dptr,#I2CS ; check the DONE bit in I2CS
212 cd1: movx a,@dptr
213 jnb acc.0,cd1
214 ret
215 ;
216 ; Set the internal EEPROM address counter to zero
217 ;
218 reset_address:
219 ;
220 ; 0. Make sure STOP is not in progress
221 ;
222 call stop_check
223 ;
224 ; 1. Set the START bit
225 ;
226 mov dptr,#I2CS
227 mov a,#10000000b ; b7=start bit
228 movx @dptr,a
229 ;
230 ; 2. Write the eeprom address 1010 000 and indicate write operation (b0=0)
7

Programming a 24LC00 EEPROM using the EZ-USB I2C Port
231 ;
232 mov dptr,#I2DAT
233 mov a,#10100000b ; address the EEPROM
234 movx @dptr,a
235 call wait_done
236 ;
237 ; 3. Sent a 0 data byte to zero the EEPROM internal address pointer.
238 ;
239 mov dptr,#I2DAT
240 mov a,#0 ; data=0
241 movx @dptr,a
242 call wait_done
243 ;
244 ;
245 ; 4. Set the STOP bit
246 ;
247 mov dptr,#I2Cs
248 mov a,#01000000b
249 movx @dptr,a
250 ret
251 ;
252 END
253
254
255
© Cypress Semiconductor Corporation, 2000. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.

