
November 1999 1/50

THE ST9 MCU FAMILY

PRODUCT OVERVIEW

The ST9 8-16/BIT MCU Family: Innovative Solutions For Embedded Control

The rapidly growing area of real-time applications represents one of the most exacting oper-
ating environments for today’s microcontrollers. Processors are required to execute complex
control algorithms, within a defined minimum response time. With the increasing complexity of
embedded control applications, a significant increase in CPU performance and peripheral
functionality over conventional 8-bit controllers is required.

Designed to meet market needs for cost-effective, high performance MCUs, the ST9’s family
bridges the gap with the worlds of 8 and 16-bit microcontrollers and covers a large range of re-
quirements in the high-end 8-bit and low-end 16-bit applications. With an ST9 microcontroller
you have the 16-bit performance (sophisticated data manipulation, real time event handling)
and the 8-bit advantages (price, noise, power consumption,...).

With the ST9 family, STMicroelectronics offers significant performance and flexibility advan-
tages over traditional 8-bit microcontrollers: it is the unequalled solution for more performance.
It provides innovative answers to yours embedded control requirements with competitive MCU
solutions for today and tomorrow.

The ST9 family is one of the most powerful range of 8/16-bit MCUs available on the market.
You combine the performance of a 16-bit microcontroller with the cost of a 8-bit microcon-
troller, with to a unique set of benefits for realtime applications.

ST90E182 MCU with on-chip HDLC ST90E158 general purpose MCU

1

2/50

Table of Contents

1 THE ST9 REGISTER BASED CORE . 10

1.1 DESCRIPTION . 10

1.2 BENEFITS OF THE REGISTER BASED ARCHITECTURE 12

1.3 THE ST9 REGISTER FILE . 13

1.3.1 Reduced code size with working register concept . 14
1.3.2 Quick peripheral access with paging mechanism . 15
1.3.3 Fast context switching thanks to working registers and registers pointers 15

1.4 MEMORY ORGANISATION AND MANAGEMENT . 17

1.4.1 Memory description . 17
1.4.2 Memory Management Unit . 18
1.4.3 External memory interface . 19

1.5 INTERRUPT MANAGEMENT . 20

1.5.1 Interrupt management description . 20
1.5.2 A powerful system for real time applications . 20
1.5.3 Interrupt vectors . 21
1.5.4 Interrupt priorities . 22

1.6 DIRECT MEMORY ACCESS . 24

1.6.1 Direct Memory Access description . 24
1.6.2 High speed system performance . 25
1.6.3 DMA priority levels . 25
1.6.4 The SWAP mode . 26

1.7 INSTRUCTIONS SET AND ADDRESSING MODES . 27

1.7.1 Overview of Instructions Set and Addressing Modes . 27
1.7.2 High speed computation . 28
1.7.3 Effective high level language support . 28
1.7.4 Addressing modes . 28
1.7.5 A good alternative to more costly 16-bit MCUs . 29

1.8 ST9 OPERATING MODES . 31

2 PERIPHERALS AND I/O PORTS . 33

2.1 FLEXIBLE I/O PORTS . 34

2.2 TIMERS . 35

2.2.1 Standard Timer (STIM) . 35
2.2.2 Watchdog Timer (WDT) . 36
2.2.3 Multifunction timer (MFT) . 38

2.3 FAST ANALOG TO DIGITAL CONVERTER (ADC) . 39

1

3/50

Table of Contents

2.4 SERIAL INTERFACE . 40

2.4.1 Universal Serial Peripheral Interface (SPI) . 41
2.4.2 Comprehensive serial communication Interface (SCI) . 42

3 DEVELOPMENT TOOLS . 43

3.1 SOFTWARE TOOLS: GNU C TOOLCHAIN . 43

3.1.1 GNU C compiler . 44
3.1.2 Assembler . 44
3.1.3 Linker . 44
3.1.4 Debugger . 44

3.2 HARDWARE TOOLS . 46

3.2.1 Real-time development tools . 46
3.2.2 EPROM programming boards . 48
3.2.3 Gang Programmer . 49

1

THE ST9 8-16/BIT MCU FAMILY: INNOVATIVE SOLUTIONS FOR EMBEDDED CONTROL

4/50

Figure 1. A unique set of benefits for real-time embedded control

The performance of the ST9 microcontroller derives from its architecture. It has a Register-File
based core optimized for sophisticated data manipulation and real-time event handling, to-
gether with a range of application-aware intelligent peripherals with the power to carry out
most tasks with the minimum processor overhead.

In the ST9, the intelligence is distributed between the core and its peripherals. The core in-
cludes the Central Processing Unit (CPU), the Register File, the interrupt and Direct Memory
Access (DMA) controller, and the Memory Management Unit (MMU). The MMU allows ad-
dressing of up to 4 Megabytes of program and data mapped into a single linear space. Instruc-
tions have been added to facilitate large program and data handling through the MMU, as well
as to improve the performance and code density of C Function calls. 14 addressing modes are
available, including powerful indirect addressing capabilities. The management of the stack
which is divided into a system stack for interrupts and subroutine calls and a user stack pro-
vide optimized support for C language.

16-BIT PERFORMANCE
WITH 8-BIT PRICE

OPTIMIZED FOR C
LANGUAGE

MEMORY MANAGEMENT
UNIT

COMPLETE DEVELOPMENT
ENVIRONMENT

BROAD FAMILY OF
STANDARD AND

APPLICATION SPECIFIC MCU

THE RIGHT DEVICE
FOR EACH

APPLICATION’S
REQUIREMENTS

COST EFFECTIVE
SOLUTIONS FOR

REAL-TIME
APPLICATIONS

16K TO 128K
ON-CHIP

PROGRAM
MEMORY

4-MEGABYTE
ADDRESS

RANGE

5/50

THE ST9 8-16/BIT MCU FAMILY: INNOVATIVE SOLUTIONS FOR EMBEDDED CONTROL

When you compare different microcontrollers, you can estimate the relative computing power
of the core, and also of the peripherals (if they include some intelligence). In some architec-
tures, the peripherals make intensive use of the core and thus take up a part of its computing
power. Many microcontrollers available on the market have a relatively powerful core, sur-
rounded by very simple peripherals. This approach has the advantage of making the periph-
erals easy to use and configure but at the expense of the overall computing power and system
management capability.

The ST9 is an example of a radically different compromise. Its core is comparable to the best
8-bit microprocessors on the market, and it boasts an impressive speed, (more than five in-
structions per microsecond). It is assisted (rather than just surrounded) by peripheral blocks
most of which can perform complex tasks without the intervention of the core. The net result is
a powerful machine that can even perform impressive tasks just using its peripherals.

Figure 2. 16-bit performance with 8-bit cost and flexibility

8 BIT CORE

ST9 8/16 BIT CORE

16 BIT CORE

PERIPHERALS

INTERRUPTS
&

DMA

SMART
PERIPHERALS

INTERRUPTS

8-bit
MCU

System management
capabilities

16-bit
MCU

ST9
8/16-bit
MCU

PERIPHERALS

8-
bi

t
16

-b
it

Core complexity

IN
T

E
R

R
U

P
T

THE ST9 8-16/BIT MCU FAMILY: INNOVATIVE SOLUTIONS FOR EMBEDDED CONTROL

6/50

The ST9 family covers a large range of markets. ST9 MCU devices fit in a range of applica-
tions from automotive to industrial, consumer and computer.

Figure 3. A broad range of applications

With their large set of peripherals and memory variants, the ST90158 and ST90135 family
members integrate all the functionality needed to control a large range of real time systems.

Figure 4. The ST90135/158 family of high performance 8/16-bit MCU

CONSUMER

- TELEVISION

- CAR RADIO

INDUSTRIAL
- MOTOR CONTROL
- METERING
- ALARM
- TOLLING
- ACCESS CONTROL
- POINT OF SALES
- INSTRUMENTATION

AUTOMOTIVE

- SAFETY

- ANTI THEFT

- BODY ELECTRONICS

-POWER TRAIN

COMPUTER

- PRINTERS

- USB

- MONITORS

67��(���0��

67��7���0�

67�����0� 67�����0� 67�����0� 67�����0� 67�����0�

520�

64K
EPROM/OTP

64K 48K 32K 24K 16K

5$0�

2k 2K 1.5k 1k 768 512
7LPHU���E

3MFT + 1STDT 3MFT + 1STDT 3MFT + 1STDT 2MFT + 1STDT 2MFT +
1STDT

2MFT +
1STDT

:DWFKGRJ

HW/SW HW/SW HW/SW HW/SW HW/SW HW/SW

6&,

2 2 2 1 1 1
63,

1 1 1 1 1 1
$'&

8 x 8-BIT 8 X 8-BIT 8 X8-BIT 8 X 8-BIT 8 X 8-BIT 8 X 8-BIT
,�2V

72/67 72/67 67 67 67 67
3DFNDJH PQFP80 PQFP80 PQFP80 PQFP80 PQFP80 PQFP80

Large peripheral set
Memory sizes from 16K TO 64K
Pin-to-pin compatible devices

PQFP80 14x20mm

7/50

THE ST9 8-16/BIT MCU FAMILY: INNOVATIVE SOLUTIONS FOR EMBEDDED CONTROL

Figure 5. A growing MCU family

Other family members include or will soon include multi purpose as well as application specific
devices designed for Automotive (CAN, J1850), Consumer (TV), Computer (Monitors,
USBus), Industrial (Motor Control, Electronic Tolling and Access Control) systems.

Figure 6. ST9 selection list

ST9 Family ROM RAM Peripherals Package Target Market

ST90135 16/24/32K
512/
768/
1K

SPI, SCI, 3 Timers,
Watchdog, ADC

PQFP80
Consumer, Automotive,

Industrial, Telecom

ST90158 48/64K 1.5K/2K
SPI, 2 SCIs, 4 Timers,

Watchdog, ADC
PQFP80

Consumer, Automotive,
Industrial, Telecom

ST90182 6K/24K 256/768
2/3 Timers, HDLC, SPI,

SCI, A/D
TQFP64

Electronic Tolling,
Access Control

ST92141 16K 512
3 Timers, Motor Con-

troller, SPI, A/D
PSDIP32/

SO34
Motor Control

ST92R195 *)

ST92195 *)
ROMLess
32K/64K

8K/

12K
OSD, Teletext SDIP56 TV Applications

ST92163 6/8/16K

256/

512/

1.5K

USB Functions, Watch-
dog, PLL, ADC, SCI,

Timers

TQFP64/
SDIP56

USB bus

PC Peripherals

ST92175*) 60/96/128K 2/2.5/3K
Timers, Sync Proces-

sor, SCI, I2C/DDC,
PWM, A/D

SDIP56,
TQFP64

Monitors

1998 1999

ST92175
MONITOR

ST9216X
USB

ST92R195/
ST92195

TV

ST90182
TOLLING/

ACCESS CONTROL

ST90135/158
16K TO 64K ROM
MULTI PURPOSE

ST92F120
24K to 128K FLASH +

EEPROM
MULTI PURPOSE

ST92R130
ROMLESS

ST92141
AC MOTOR CTL

ST92F1XX
CAN 2.0B ACTIVE

ST92F1XX
J1850

Exist. Devt. Plan.

2000

THE ST9 8-16/BIT MCU FAMILY: INNOVATIVE SOLUTIONS FOR EMBEDDED CONTROL

8/50

With the ST9’s modular architecture and the unique core technology, you can easily up or
downgrade within the same product family keeping software investment. You can choose the
right device for the right task, at the right price from a broad product folio.

Figure 7. ST9 modular architecture

In addition, the ST9 can be easily customized to specific requirements of high volume applica-
tions

ST9 devices are manufactured using state of the art technology, allowing low power consump-
tion, maximum performance, cost efficiency and reliability.

Figure 8. Competitive technologies for today and tomorrow

REGISTER BUS/INTERRUPT-DMA BUS

MEMORY BUS

DEDICATED
PERIPHERALS

STANDARD
PERIPHERALS

C
P

U

C
O

R
E

R
A

M

E
P

R
O

M

E
E

P
R

O
M

R
O

M

16
 B

IT
S

L
IC

E
 T

IM
E

R

S
C

I

A
/D

 C
O

N
V

E
R

T
E

R

I/O
 P

O
R

TS

M
U

L
TI

-F
U

N
C

TI
O

N
T

IM
E

R

O
N

-S
C

R
E

E
N

D
IS

P
L

A
Y

D
A

T
A

 S
L

IC
E

R

S
P

I

T
IM

E
R

-W
A

TC
H

D
O

G

EPROM
ROM

FLASH +
EEPROM

EPROM
ROM

ROM

FLASH +
EEPROM

16 MHz
25 MHz

40 MHz

0.6µm 0.5µm 0.35µm

2000-

1999-

1998-

1997-

9/50

THE ST9 8-16/BIT MCU FAMILY: INNOVATIVE SOLUTIONS FOR EMBEDDED CONTROL

The ST9 family of MCUs is supported by a comprehensive range of development tools: a soft-
ware package (C-compiler, assembler, linker, archiver, debugger, Real Time Kernel) and a
set of hardware tools (emulators, programmers).

Figure 9. A complete development environment

HARDWARE

DEVELOPMENT

SYSTEM

HIGH LEVEL

DEVELOPMENT

SOFTWARE

COMPREHENSIVE

DOCUMENTATION

AND TECHNICAL

SUPPORT

HIGH PERFORMANCE

REAL TIME

EMULATOR

EFFECTIVE APPLICATION

DEVELOPMENT

MAINTAINING

OR PORTING

SECURED DEVELOPMENT

OF SOPHISTICATED

APPLICATIONS

THE ST9 REGISTER BASED CORE

10/50

1 THE ST9 REGISTER BASED CORE

1.1 DESCRIPTION

Figure 10. ST9 core block diagram

The ST9 core consists of:

- the Central Processing Unit with an 8-bit Arithmetic Logic Unit, the brain of the system that
processes all data and controls the internal busses.

- the Register File, a set of 256 registers including:

224 general purpose registers available as 8 or 16-bit accumulators, index registers or
address pointers

16 system registers (stack pointers, flags, modes, interrupts,...)

64 pages of 16 registers each for peripheral management (generally, one page for
each peripheral)

- a Memory Management Unit which allows addressing of up to 4 Mbytes of program and
data mapped into a single linear space

- 6-bit Interrupt and DMA bus connected to each peripheral for interrupts and to the SCI,
MFT, I2C and USB for DMA

MMU
Memory

Management
Unit

INTERRUPT and DMA 6-BIT BUS

REGISTER

FILE AND DMA
INTERRUPT

BUS LOGIC PROGRAM
COUNTER

SYSTEM STACK
POINTER

USER STACK
POINTER

ALU
8/16 BIT

8-BIT DATA AND 16-BIT ADDRESS BUS

REGISTER DATA 8-BIT BUS

REGISTER ADDRESS 8-BIT BUS and PAGE 6-BIT BUS

INTERNAL ADDRESS 16-BIT BUS

11/50

THE ST9 REGISTER BASED CORE

The ST9 core has an unique and powerful structure. Its architecture is built around a set of
registers called Register File. This allows efficient bit, byte and word data handling and sup-
ports high level languages more efficiently than traditional accumulator machines.

Figure 11. Register File structure

The Direct Memory Access and the multiple priority Interrupt Controller further increase
the ST9’s capability to manage sophisticated real time, task and communications-intensive
applications effectively.

0

15

UP TO 64 PAGES
FOR PERIPHERALS

AND I/O PORTS
CONTROL

GENERAL

REGISTERS

PURPOSE

224

F

E

D

C

B

A

9

8

7

6

5

4

3

PAGED REGISTERS

SYSTEM REGISTERS

2

1

0

WORKING BANK 1
16 x 8-BIT OR 8 x 16-BIT REGISTERS

WORKING BANK 2

ACTIVE PAGE

PAGE AND
 SYSTEM

 POINTERS

THE ST9 REGISTER BASED CORE

12/50

1.2 BENEFITS OF THE REGISTER BASED ARCHITECTURE

The usual microprocessor core structure is based on an accumulator. The accumulator is the
one register that holds the data to work on and the results of the arithmetic or logical opera-
tions applied to it. This classic structure is characterised by its simplicity: the internal data
paths of the microprocessor all converge to the accumulator. The instruction set is simple,
since you need to specify only one memory address in a data move instruction, the other
being implicit: the accumulator itself.

This simplicity has its drawbacks: the accumulator is the computation bottleneck, since to
move data from one place in memory to another place, you have to do it through the accumu-
lator. The simplest transfer involves at least two instructions: one to get the data, the other one
to store it.

Register oriented models, in contrast, allow you to move data directly from one place to an-
other in a single instruction as illustrated in the example below.

Figure 12. Example of 8-bit memory-memory transfer

Data can come from a register or from a memory address and can go to either to a register or
a memory address. You can code the addresses in the instruction, or store them in registers
referenced by the instruction. This allows you to optimize your code by choosing to store fre-
quently used data in registers, leaving less frequently used data in memory.

The register based architecture saves execution time and code lines because there are less
save and restore operations of data and pointers.The example given in Figure 13 shows the
difference between the two architectures when you want to add two 8-bit operands from
memory and to store the result in memory.

Content of rr6

Content of rr4

'7

�

MEMORY

ld (rr4), (rr6) --> 3 bytes --> 0.64 µs
(1) ldaa [D, x]
(2) staa [D, x]

--> 4 bytes --> 1.37 µs

REGISTER BASED ARCHITECTURE
ST9, 25 MHz internal

ACCUMULATOR BASED ARCHITECTURE
68HC12, 8 MHz internal

MEMORY

$&&808/$725�$

(2)

(1)

'7

13/50

THE ST9 REGISTER BASED CORE

Figure 13. Example of adding two 8-bit memory operands

The advantage of register based architecture is obvious in number of lines and bytes and in
execution time.

1.3 THE ST9 REGISTER FILE

The ST9 has a special addressing space for registers, providing 256 different register ad-
dresses. This large amount of registers gives you considerable flexibility in allocating varia-
bles. Register addresses are coded using one byte. You can use any of these registers to hold
data or as a pointer either to other registers or to bytes in memory.

Figure 14. ST9 Register File organization

ST9

16-BIT
ACCUMULATOR

MACHINE

CODE BYTES EXECUTION TIME

add (rr), (rr)
(16-bit indirect)

3 0.56 µs

ldaa [D, x]

adda [D, y]

staa [D, x]

 MICROCONTROLLER

68HC12

2

2

2

750 ns

750 ns

625 ns

2.12 µs6(16-bit indexed)

 ARCHITECTURE INTERNAL CLOCK
SPEED

8/16-BIT
REGISTER
MACHINE

8 MHz

25 MHz

PAGE REGISTERS
FOR PERIPHERAL MANAGEMENT

SYSTEM
GROUP

R223

R240

R255 PAGED
REGISTERS

GROUP 0

GROUP 1

GROUP F

GROUP E

GROUP N

R0

R15

R16

224 GENERAL PURPOSE REGISTERS:
- Accumulator (destination of operation)
- 8 or 16-bit register
- Pointer for indirect addressing mode
- Working register

REGISTER FILE

MULTIFUNCTION TIMER

A/D CONVERTER

SCI

SYSTEM REGISTERS:
- Stack pointers (user and system)
- Working register and page pointers
- Mode register, Flag register

THE ST9 REGISTER BASED CORE

14/50

1.3.1 Reduced code size with working register concept

To further improve coding efficiency, a special mechanism has been created: the concept of
working register. This mechanism is a short direct addressing mode which provides faster ex-
ecution and more compact code. It reduces to just 16 bytes the register space accessible by
the instructions in the so-called working register addressing mode. Only four bits are required
to address this space, allowing both the source and the destination of a data move to be coded
in a single byte, thus saving both code size and execution time.

Figure 15. Example of the benefits of working registers

Working register mechanism is mandatory for bit manipulation instructions, to use a register
as a pointer in most indirect addressing modes, for multiply and divide instructions.

Figure 16. Example of using working registers

OPCODE EXECUTION TIMECODE SIZE

3 bytes 240 ns

INSTRUCTION FORMAT

2 bytes 160 nsCP r, r

CP R, R

[opc] [dst | src]

[opc] [src] [dst]

Register file

System Group

Block 3
Block 2
Block 1
Block 0

R0

R255

R15

R7 Group 0

Group D

Block 17
Block 16 Group 8

Group 1

Block 31
Block 30

Block 27
Block 26

Group F

R224

RP0

r15
r14
r13
r12
r11
r10
r9
r8
r7
r6
r5
r4
r3
r2
r1
r0

Group 8

R143
R142
R141
R140
R139
R138
R137
R136
R135
R134
R133
R132
R131
R130
R129
R128

bres r4.6
ld (r3), #12
mul rr10, r5

srp #16

working
block

selection

use of any of
the 16 registers

15/50

THE ST9 REGISTER BASED CORE

1.3.2 Quick peripheral access with paging mechanism

All internal peripherals are mapped in the register space and you can access them with a fast
8-bit bus. Most of them have a multitude of features and can be configured in different ways.
This implies that they have a large number of registers. Since only the last group of 16 regis-
ters is allocated for peripherals, a special scheme must be used to overcome this problem. It
is called paging.

The last group of registers actually addresses one page of 16 registers that belongs to one of
the peripherals. Which page of which peripheral depends on the value of a register called the
Page Pointer Register. There can be as many as 64 different pages, providing plenty of space
for accessing peripherals.

Although the handling of the peripheral pages requires extra bytes, the 8-bit ST9 register file
address bus saves overall execution time and keeps some software compatibility between
devices with different peripheral sets.

1.3.3 Fast context switching using working registers and register pointers

Another benefit of the ST9 Register File is the capability of effectively switching context on
asynchronous events by simply pointing to a new active page and bank after saving the cur-
rent values in the stack.

The working registers offer a workspace of 16 bytes. This is sufficient for most applications,
and much more convenient than a single accumulator. However, in some applications, this is
still not enough. In this case you can easily allocate more than one register group to a partic-
ular program module. Since any register can be accessed directly, it is up to you to decide
whether you want to switch working register groups or not to access the other groups of reg-
isters.

Since changing the current group involves only one instruction, the concept of working regis-
ters can greatly reduce context switching time, for example in the case of an interrupt
service routine. Doing this preserves the contents of the whole group, and the reverse opera-
tion restores them, as in the example below which shows the reception of a character from the
Serial Interface.

While the critical parameters of the event are managed in a reserved “SCI working bank”, the
key parameters of the interrupted task (the core program or another interrupt routine of lesser
priority) are left untouched in the “Core working bank”. This means that critical information for
core program or routines remains in the register file. Only register and page pointers need to
be stacked. Once the incoming character has been managed, the pointers in the system bank
are restored to their previous values and the interrupted task is resumed, resulting in minimum
data manipulation and maximum execution speed.

THE ST9 REGISTER BASED CORE

16/50

Figure 17. Example of reading one character from SCI

Supposing you could not switch working registers, you could have to push 16 bytes to the
stack to ensure that the contents of the working area have been preserved, and pop them
back before returning. Obviously the example above is more efficient, both in code and data
memory size, and also in execution time.

SCI Interrupt

1.8 µs
MAX INST.

CORE PROGRAM

CORE PROGRAM

F

E

PAGED REGISTERS

SYSTEM REGISTERS

CORE WORKING
 BANK

SCI WORKING
 BANK

SCI PAGE

CORE PAGE

1

3

3
2

;.((3�75$&.�2)�&855(17�*5283

PUSHW RPP ;SAVE REGISTER POINTER (1)

PUSH PPR ;SAVE PAGE POINTER REGISTER (2)

;6:,7&+�72�$�1(:�*5283

SRP #SCI_BANK ;SET SCI PAGE AND BANK (3)

SPP #SCI_PG

;%2'<�2)�7+(�,17(55837�6(59,&(�5287,1(

;PERFORM CHARACTER

;MANAGEMENT WITHIN

;THE NEW ACTIVE

;REGISTER BANK

;5(6725(�:+$7(9(5�*5283�:$6�$&7,9(

P0P PPR ;RESTORE REGISTER POINTER

P0PW RPP ;RESTORE PAGE POINTER REGISTER

IRET ;5(7851�)520�68%5287,1(

17/50

THE ST9 REGISTER BASED CORE

1.4 MEMORY ORGANISATION AND MANAGEMENT

1.4.1 Memory description

The ST9 devices provides two different address spaces: the Register File and a single linear
Memory Space accommodating both programs and data.

Figure 18. ST9 memory organization

The Register File draws its power from its size: 256 registers of which 224 are uncommitted,
and from the fact that it can hold data pointers to data that reside in any of the two spaces.

All of the physically separate memory areas, including the internal ROM, internal RAM and ex-
ternal memory are mapped in the common address space which is the Memory Space. A
total addressable memory space of 4 Mbytes is available. This address space is arranged as
64 segments of 64 Kbytes. Each segment is further subdivided into four pages of 16 Kbytes,
as illustrated in Figure 19.

REGISTER FILE

240 bytes + 16 x No. of periph. + I/Os

 MEMORY SPACE

PROGRAM
AND

 DATA
 MEMORY

ROM
EPROM

EEPROM
FLASH
RAM

Up to 4 Megabytes

R255

R0

PAGED REGISTERS

SYSTEM GROUP

Up to 64 pages

224
REGISTERS

THE ST9 REGISTER BASED CORE

18/50

Figure 19. Memory Space organization

1.4.2 Memory Management Unit

1.4.2.1 4 Mbytes of address space with the MMU

The ST9 Core includes a Memory Management Unit (MMU) which allows the addressing
space to be extended to 4 Mbytes.

The MMU is controlled by 7 registers. These registers may be sub-divided into 2 main groups:
a first group of four 8-bit registers (DPR0-3) used to extend the address during Data Memory
access, and a second group of three 6-bit registers (CSR, DMASR, ISR) used to manage Pro-
gram and Data Memory accesses during Code execution, Interrupts, and DMA service rou-
tines.

To manage 4 Mbytes of addressing space it is necessary to have 22 address bits. The MMU
adds 6 bits to the usual 16-bit address, thus translating a 16-bit virtual address into a 22-bit
physical address. There are 2 different ways to do this depending on the memory involved and
on the operation being performed.

4 Mbytes Total
Address Space

64 Kbytes

Address 16K Data Page
64K Code
Segment

Paged,
managed by

4 pointers

Segmented,
managed
through

instructions

19/50

THE ST9 REGISTER BASED CORE

Figure 20. Addressing via MMU registers

1.4.2.2 Advantages of using the MMU

In typical microcontroller applications, less than 16 Kbytes of RAM are used, so just one of the
four Data space pages is normally sufficient. It may be useful however to map part of the ROM
to the data space if it contains strings, tables, bit maps, etc.

The Management Memory Unit lets interrupt service routines access the whole 4-Mbyte ad-
dress space. The drawback is that the interrupt response time is slightly increased, because of
the need to also save additional registers on the stack.

The MMU allows a DMA controller which uses two different registers for Program memory and
Data memory accesses will always find its memory segment(s), no matter what segment
changes the application has performed.

1.4.3 External memory interface

In the event of an application requiring more ROM space than available on-chip, or for easier
program management and customization with external memory or peripherals, the ST9 micro-
controller supports an external memory interface on some devices. The external memory in-
terface provides the memory lines and timing and status control signals, plus enhanced fea-
tures including programmable memory wait cycles, bus request/acknowledge cycles and
shared memory bus access control.

The ST9 Memory Control Unit automatically recognizes if a memory location belongs to on-
chip memory or not and works accordingly.

16-bit virtual address

22-bit physical address

6 bits

MMU registers

THE ST9 REGISTER BASED CORE

20/50

1.5 INTERRUPT MANAGEMENT

1.5.1 Interrupt management description

The ST9 devices respond to, and control peripheral events and external events through their
interrupt channels. When such an event occurs, if previously enabled and according to a pri-
ority mechanism, the current program execution can be suspended to allow the ST9 to exe-
cute a specific response routine. If the event generates an interrupt request, the current pro-
gram status is saved after the current instruction is completed and the CPU control passes to
the Interrupt Service Routine.

The ST9 CPU can receive requests from the following type of sources: on-chip peripherals,
external pins, top level non maskable interrupt.

Up to eight external interrupt channels, with programmable input trigger edge, are available. In
addition, a dedicated interrupt channel, set to the Top-level priority, can be assigned either to
the external pin NMI (to provide a Non-Maskable-Interrupt) or to the Watchdog Timer. Inter-
rupt service routines are addressed through a vector table mapped in Program Memory. This
Interrupt vector table, up to 128 vectors, allows additional peripherals for more modularity.

1.5.2 A powerful system for real time applications

To achieve maximum performance, the ST9 family offers a powerful solution to the response
requirements of real time systems with its advanced interrupt structure. The interrupt system
allows you to handle various asynchronous events and to build very efficient programs with
excellent interrupt response times. With a maximum interrupt response time of 1,88 µs, the
ST9 family is particularly suited for real time applications.

Figure 21. Interrupt response time in the worst case, with MMU intersegment jump

INTERRUPT

EXC. HANDLING

RESPONSE TIME 47 INTCLK CYCLES MAX

MISSED
ARBITRATION

VALID
ARBITRATION

(IN ST9 + INSTRUCTION CAN BE INTERRUPTED IF THEY
HAVEN’T YET MODIFIED REGISTERS OR MEMORY)

INSTRUCTION N+1INSTRUCTION N

NON INTERRUPT.
SEQUENCE.

6-1=5
INTCLK

6 INTCLK 14

22

6 INTCLK

CORRESPONDING TO 1.88 µS AT 25 MHz

21/50

THE ST9 REGISTER BASED CORE

1.5.3 Interrupt vectors

The ST9 implements an interrupt vectoring structure that allows the on-chip peripheral to au-
tomatically identify the location of the first instruction of the Interrupt Service Routine (ISR).

When the interrupt request is acknowledged, the peripheral interrupt module provides,
through its Interrupt Vector Register (IVR), a vector to point into the vector table of locations
containing the start addresses of the Interrupt Service Routines (defined by the programmer).

Each peripheral has a specific IVR mapped within its Register File pages.

The Interrupt Vector table, containing the list of the addresses of the Interrupt Service Rou-
tines, is located in the first 256 locations of the Program Memory (ROM).

Figure 22. Vector table organization

1 st 256 bytes
up to 128 vectors

TOP LEVEL
ISR

RESET
ISR

Fixed
Address

0000h

0100h

MEMORY

Top Level

Divided by
Zero

Power on
reset

THE ST9 REGISTER BASED CORE

22/50

1.5.4 Interrupt priorities

In any microprocessor-based system, there is a trade-off between the computational power of
the main program and the interrupt latency time. Expressed simply, the less the main program
is disturbed, the sooner it finishes its job. In the other hand, the CPU often needs to serve in-
terrupt requests generated by the peripherals as quickly as possible. A compromise must be
found to give both enough power to the main program while still staying as responsive as pos-
sible to interrupts.

A typical microcontroller will leave the burden of this work almost entirely with the pro-
grammer. On the ST9, powerful interrupt management is available to significantly help the
programmer.

The ST9 supports a fully programmable interrupt priority structure. Nine priority levels are
available to define the channel priority relationship. Each channel has a PRiority Level (PRL),
that defines its priority level among eight programmable levels for interrupt requests. The ninth
level (Top Level Priority) is reserved for the internal Watchdog Timer or the external Non-
Maskable-Interrupt. The on-chip peripheral channel and the eight external interrupt sources
can be programmed within eight priority levels: level 7 has the lowest priority, level 0 has the
highest priority.

Figure 23. Interrupt priorities for peripherals

The priority mechanism is driven by the Current Priority Level parameter. At a given time, the
part of the program being executed runs under a certain level. You can change the level by
writing a different value in the Central Interrupt Control Register (CICR). You can assign a pri-
ority level to each interrupt source. At initialisation time, this value is written in one of the con-
trol registers specific to the corresponding peripheral.

Serial Communication Interface
priority 3

ST9
CORE

Timer
priority 4

Analog to Digital Converter
priority 2

first
served

23/50

THE ST9 REGISTER BASED CORE

When a peripheral requests an interrupt, the built-in interrupt controller compares the priority
level of the interrupt request to the Current Priority Level. The interrupt is only acknowledged
if its priority is greater than the Current Priority Level. This allows you to filter out interrupt re-
quests according to their degree of importance or of urgency according to the current activity
of the program. If several requests have the same priority level, an internal daisy chain, fixed
for each ST9 device, defines the priority relationship within that level. The Non-Maskable In-
terrupt input (NMI) is hard wired with a higher priority than any level, and thus is acknowledge
immediately in all circumstances.

ST9 provides two interrupt arbitration modes: Concurrent and Nested modes. Concurrent
mode is the standard interrupt arbitration mode while Nested mode improves the effective in-
terrupt response time when nested interrupts are required.

Figure 24. Example of nested and concurrent arbitration modes

MAIN PROGRAM

INT1

0

1

2

3

4

5

6

7

INT2

INT3

INT1

MAIN

PROGRAM INT4 INT6 INT7 INT4 MAIN PROGRAM

INT1

INT2 INT3

INT4

INT1

INT6/INT7

CPL set to
4

NESTED
MODE

CONCURRENT
MODE

IAM bit =
0

TIME

INTERRUPT 1 HAS PRIORITY LEVEL 5

ei

ei

CPL=2

CPL=3

CPL=5 CPL=5

CPL=4

CPL=7 CPL=7

INTERRUPT 2 HAS PRIORITY LEVEL 2

INTERRUPT 3 HAS PRIORITY LEVEL 3

INTERRUPT 4 HAS PRIORITY LEVEL 2

INTERRUPT 6 HAS PRIORITY LEVEL 1

INTERRUPT 7 HAS PRIORITY LEVEL 2

INTERRUPT 5 HAS PRIORITY LEVEL 0

CURRENT
PRIORITY

LEVEL

THE ST9 REGISTER BASED CORE

24/50

1.6 DIRECT MEMORY ACCESS

1.6.1 General description

Direct Memory Access capability is a feature seldom found in 8-bit MCUs. It allows the micro-
controller to handle input/output data flow without using core instruction cycles.This feature al-
lows you to boost the system performance.

Direct Memory Access consists of a transfer between memory and a peripheral, in either di-
rection. DMA transfers are implemented by means of a DMA controller which stops the in-
struction execution and perform the data transfer. The core can then restart the instruction ex-
ecution at the end of the transfer. The DMA controllers acts as part of the peripherals. They
use an indirect addressing mechanism to DMA Pointers (address pointers which contain the
address of the DMA table) and Counter Registers (registers which contain the number of
bytes to transfer) stored in the Register File.

Figure 25. DMA overview

Assuming the peripheral is configured to handle externally supplied data or to provide data to
external circuits, two steps are needed for a transfer to occur:

– The transfer must be requested by some event or condition

– A mechanism must handle the reading of the data from one part and the writing to the other
part

The term DMA transfer represents the transfer of a single byte (or word) of data. Usually, more
than one byte is transferred and the transfer occurs in bursts. Thus, a third step is involved:

– A mechanism that counts the transfers and stops them when the count is finished

Memory/Register
File

Counter
Address

Peripheral

Already transferred
 data

Data to be
transferred

Register File

Data Register

25/50

THE ST9 REGISTER BASED CORE

1.6.2 High speed system performance

Once properly initialised, the DMA controller allows peripherals to exchange data either with
memory or the register file, with no use of core resources other than the memory cycles stolen
in order to transfer the data. The maximum number of bytes that can be transferred per trans-
action by each DMA channel is 222 when accessing the Register File, or 65536 (64 Kbytes)
when accessing Memory. The time needed to transfer information between memory or regis-
ters and peripherals is reduced to less than 1 µs. A DMA transfer with the Register file requires
8 CPUCLK cycles or 0.32 µs at 25 MHz and a DMA transfer with memory requires 16
CPUCLK cycles or 0.64 µs, plus any required wait states.

DMA can dramatically improve system performance in communications-intensive applica-
tions. For example, reading a character every 8 µs from the SCI received at 1Mbit per second
requires 35% of the CPU time just to manage the interrupt routine. With DMA, up to 30% of ad-
ditional CPU time is available for other control functions

Figure 26. Example of the benefit of DMA when reading a character from the SCI

1.6.3 DMA priority levels

The 8 priority levels used for interrupts are also used to prioritize DMA requests, which are ar-
bitrated in the same arbitration phase as interrupt requests. If the event requires a DMA trans-
action, this will take place at the end of the current instruction execution. When an interrupt
and a DMA request occur simultaneously, on the same priority level, the DMA request is serv-
iced before the interrupt because DMA is faster (only a few cycles) compared to interrupt.

:,7+�'0$:,7+�,17(55837

'DWD�UHDG\

HYHU\���V

&38�/2$'���'0$���������� ����

&38�/2$'��,17(55837�������� �����

,17(51$/�&/2&.����0+]

DMA BETWEEN

SCI AND REGISTER

 (0.32 µs)

SAVE CONTEXT

SWITCH CONTEXT

READ DATA

MANAGE POINTERS

RESTORE CONTEXT

RETURN FROM INT
(2.8 µs/56 Cycles)

&25(�352*5$0

&25(�352*5$0

30 % OF ADDITIONAL CPU
AVAILABILITY !!

THE ST9 REGISTER BASED CORE

26/50

DMA requests are serviced if their priority level is equal to or higher than the Current Priority
Level. DMA transactions are not interruptable. However DMA requests are not acknowledged
during a top level interrupt routine.

An interrupt priority request must be higher than the Current Priority Level (CPL) value in order
to be acknowledged, whereas, for a DMA transaction request, it must be equal to or higher
than the CPL value in order to be executed. Thus, only DMA transaction requests can be ac-
knowledged when the CPL = 7.

DMA requests do not modify the CPL value, since a DMA transaction is not interruptable.

1.6.4 SWAP mode

An additional DMA feature which may be found on some peripherals (i.e the MultiFunction
Timer) is Swap mode. This feature allows transfer from two DMA tables alternatively. All the
DMA descriptors in the Register File are thus duplicated. Two DMA transaction counters and
two DMA address pointers allow the definition of two fully independent tables (they only have
to belong to the same space, Register File or Memory). The DMA transaction is programmed
to start on one of the two tables (say table 0) and, at the end of the block, the DMA controller
automatically swaps to the other table (table 1) by pointing to the other DMA descriptors. In
this case, the DMA mask (DM bit) control bit is not cleared, but the End Of Block interrupt re-
quest is generated to allow the optional updating of the first data table (table 0).

As long as swap mode is enabled, the DMA controller will continue to swap between DMA
Table 0 and DMA Table 1.

27/50

THE ST9 REGISTER BASED CORE

1.7 INSTRUCTIONS SET AND ADDRESSING MODES

1.7.1 Overview of Instruction Set and Addressing Modes

The ST9 is referred to as an 8/16-bit microcontroller. This means that although the size of the
internal registers and the width of the data bus are 8 bits, the instruction set includes instruc-
tions that handle a pair of registers or a pair of bytes in memory at once. These instructions
represent roughly one half of the total instructions, which means that the ST9 can be pro-
grammed with the same ease as if it were a full 16-bit machine. This is why it is so well suited
for C programming.

The ST9 instruction set consists of 94 instruction types which can be divided into eight groups:
Load (two operands), Arithmetic & logic (two operands), Arithmetic Logic and Shift (one op-
erand), Stack (one or two operands), Multiply & Divide (two or three operands), Boolean (one
or two operands), Program Control (zero to three operands), Miscellaneous (zero to two oper-
ands). The ST9 can operate with a wide range of data lengths from single bits, 4-bit nibbles
which can be in the form of Binary Coded Decimal (BCD) digits, 8-bit bytes, and 16-bit words.
A particularly notable feature is the comprehensive “Any Bit, Any Register” (ABAR) ad-
dressing capability of the Boolean instructions.

Figure 27. Example of direct bit addressing mode

Powerful addressing modes such as indirect, indirect with increment or decrement, indexed
shorten the code needed to access data even in complex structures or arrays. They also facil-
itate access to local variables created on the stack on entering functions. This full set of ad-
dressing modes allows simple access to complex data arrays of structures (high level lan-
guage) and less pointer calculation using ALU.

Working registers, that benefit from the most powerful instructions and addressing modes, are
heavily used by the compiler. In fact, the GNU9 compiler does not always translate the source
code. There are optimization schemes that save execution time and/or memory by judiciously
allocating the working registers, so that in many cases arguments are not pushed to the stack
but merely to an available working register.

r12 r7

 bld r7.3, r12.6
this instruction loads the bit 6 of the working
register 12 in bit 3 of working register 7.

1 1

THE ST9 REGISTER BASED CORE

28/50

1.7.2 High speed computation

The relocatable working register bank of either 16x8-bit or 8x16-bit register locations supports
the fastest available instructions. With the extensive set of instructions and addressing modes,
the ST9 is thus able to handle complex calculations (for example a large array of data in the
memory), much faster than any 8-bit accumulator machine.

For example, the complex instruction below, which can be used to search a character in a
table, has the following characteristics at 25 MHz:

Figure 28. Example of reduced code size and fast execution time capabilities

1.7.3 Effective high level language support

In addition, the optimizer of the ST9 GNU C Compiler make full use of the available set of in-
structions and addressing modes, and optimizes the register allocation for function parameter
within the working register bank.

The compiler generates very fast and compact code, even from sophisticated data manipula-
tion routines.

Critical parts of the software can be further optimized by interleaving C statements with as-
sembly language to benefit from the effectiveness of the instruction set (for example, the im-
plementation of a character search in a table with a single opcode).

1.7.4 Addressing modes

The ST9 offers a wide variety of established and new addressing modes and combinations to
facilitate full and rapid access to the address spaces while reducing program length. The avail-
able addressing modes are shown in Figure 29.

OPCODE EXECUTION TIME CODE SIZE

CPJTI r, (rr), N

No Jump Jump

3 BYTES0.56 µs 0.64 µs

29/50

THE ST9 REGISTER BASED CORE

Figure 29. Addressing Modes

Single operand arithmetic, logic and shift byte instructions have direct register and indirect
register addressing modes. For a full list of the possible combinations for each instruction
type, please refer to the ST9 Programming Manual.

1.7.5 A good alternative to more costly 16-bit MCUs

The wide range of instructions eases use of the register file and address spaces, reducing op-
eration times, while the register pointer mechanism gives an unmatched code efficiency.

Figure 30. Example of a powerful instruction

Operand is in Addressing Mode
Destination

Location
Notation

Instruction Immediate
Byte
Word

#N
#NN

Register File Direct
Byte
Word

r
rr

Indirect Byte/Word (r)
Indexed Byte/Word N(r)
Indirect Post-Increment Byte (r)+

Program or Data Memory Direct Byte/Word NN
Indirect Byte/Word (rr)
Indirect Post-Increment Byte/Word (rr)+
Indirect Pre-Decrement Byte/Word -(rr)
Short Indexed Byte/Word N(rr)
Long Indexed Byte/Word NN(rr)
Register Indexed Byte/Word rr(rr)

Any bit of any working register Direct Bit r.b
Any bit in program or data memory Indirect Bit (rr).b

CPJTI: COMPARE and JUMP if TRUE OTHERWISE POST-INCREMENT
Compare the contents of destination and source. If compare is TRUE,
JUMP to the JUMP address OTHERWISE post-increment the pointer
These instructions are useful for performing data searches in memory

Source pointer ; incremented if
compare is not verified

CPJTI r2 , (rr14) , OK_COMP

Branch address if compare is verified

Reference value for comparison

THE ST9 REGISTER BASED CORE

30/50

This instruction set facilitates large program and data handling through the MMU, and it im-
proves the performance and code density of C function calls. The 8 and 16-bit data manipula-
tion offered by these instructions gives a cost effective alternative to 16-bit MCUs.

Figure 31. ST9 vs 68HC12 on a 16-bit memory-memory transfer

ST9

16-BIT
ACCUMULATOR

MACHINE

CODE BYTES EXECUTION TIME

ldw (rr), (rr) 2 0.64 µs

 MICROCONTROLLER

68HC12 ldd [opr16, x]
std [opr16, x]

4
4

750 ns
625 ns

1.37 µs8(16-bit
indexed-indirect)

 ARCHITECTURE INTERNAL CLOCK
SPEED

8/16-BIT
REGISTER
MACHINE

8 MHz

25 MHz
(16-bit indirect)

31/50

THE ST9 REGISTER BASED CORE

1.8 ST9 OPERATING MODES

To provide for real time management capability, the ST9 is designed to operate at a higher in-
ternal clock speed compared to traditional 8-bit architecture.

The advantage of the PLL is that, a low cost 4 MHz crystal or ceramic resonator can be used
to generate an internal operating frequency of up to 25 MHz.

To optimize the performance versus power consumption of the application, ST9 devices sup-
port a range of operating modes that can be dynamically selected to meet the performance
and functionality requirements of the application at a given moment.

Figure 32. Clock control unit simplified block diagram

RUN MODE: This is the full speed execution mode with CPU and peripherals running at the
maximum clock speed delivered by the Phase Locked Loop (PLL) of the Clock Control Unit
(CCU), or any frequency obtained from the appropriate programming of the control registers.

SLOW MODE: Power consumption can be significantly reduced by running the CPU and the
peripherals at reduced clock speed using the CPU Prescaler and CCU Clock Divider.

In this mode, using a 4MHz Crystal, the ST9 operates down to 125KHz and draws down to
1mA typical.

Quartz

1/16

1/2oscillator CLOCK2
CLOCK1

PLL
Clock Multiplier

CPU Clock
Prescaler

to
CPU Core

to
Peripherals

CPUCLK

INTCLK

 Unit/Divider

3-5 MHz

(0-25 MHz)

x 6, 8, 10, 14
: 1 to 7

: 1 to 8

THE ST9 REGISTER BASED CORE

32/50

WAIT FOR INTERRUPT MODE: The Wait For Interrupt (WFI) instruction suspends program
execution until an interrupt request is acknowledged. During WFI, the CPU clock is halted
while the peripheral and interrupt controller keep running at a frequency depending on the
CCU programming.

HALT MODE: When executing the HALT instruction and if the Watchdog Timer is not pro-
grammed as a watchdog, the CPU and its peripherals stop operation and the I/O ports enter
high impedance mode. A typical power consumption of less than 1µA is achieved

An external Reset is necessary to exit from Halt mode.

Figure 33. Typical power consumption of the ST90158 In RUN and Wait For Interrupt

20

10

0

30

4 8 12 16 20 24

50

40

60

28

I DD
 ru

n 5V

IDD run 3V IDD WFI 5V

IDD WFI 3V

mA

Internal Frequency (MHz)

ST90158 Power Consumption

33/50

PERIPHERALS AND I/O PORTS

2 PERIPHERALS AND I/O PORTS

The ST9 family devices include a range of powerful peripherals and I/O Ports.

Figure 34. Main standard peripherals

Most peripherals of the ST9 have sufficient built-in intelligence to be able to perform even
complex jobs on their own, freeing the core almost entirely from basic peripheral manage-
ment. They include powerful control and data management functions that drastically reduce
CPU overhead. This capability to work independently from the CPU allows the core to be fully
utilized for the most complex microprocessing tasks.

A typical example is the Analog-to-Digital Converter (A/D) that automatically monitors two
channels and interrupts the CPU when one of the inputs is outside a predefined voltage range
(for example the speed variation of a motor or a drop in the power supply).

Name Function

Multi-Function Timer

All counting and timing functions. Includes auto-reload on con-
dition, interrupt generation, DMA transfer, two inputs for fre-
quency measurement or pulse counting, two outputs that can
change on condition.

Conditions include: overflow/underflow, comparison with one or
two compare registers.

Capture registers allow recording transitions on inputs with their
time of occurrence.

Serial Communication In-
terface

Asynchronous transfer with either internal bit-rate generation or
an external clock. Parity generation/detection. Address recogni-
tion feature that can request an interrupt on match of an input
character. DMA transfer.

Serial Peripheral Interface
Serial input or output register, with internal or external clock. In-
tended for I/O expansion, or synchronous serial external device
such as serial EEPROM.

Watchdog Timer
Can be used either as a watchdog or as a timer with input and
output capable of pulse counting or waveform generation.

Input/Output port

Parallel input/output port. Each bit individually configurable as
input, output, bi-directional, or alternate function. Inputs can be
high impedance or with pull-up, CMOS or TTL-level. Outputs
can have open drain or push-pull configuration.

Analog to Digital Converter

Eight-bit analog to digital converter. One to eight channels can
be converted in a row. On each of two of the eight channels, an
Analog Watchdog function defines upper and lower thresholds.
When exceeded, an interrupt is generated.

PERIPHERALS AND I/O PORTS

34/50

2.1 FLEXIBLE I/O PORTS

The basic functionality of the parallel input-outputs is very straightforward. Once initialised,
they appear as a register that can be written or read. However in many cases, direct byte-wide
I/O is not sufficient. Bit-oriented I/O is often what is used in microcontroller systems.

A powerful feature of the ST9 devices is that you can address the eight bits of each port indi-
vidually to provide digital and analog input/output, or to connect input/output signals to the on-
chip peripherals as alternate pin functions. The ST9 also provides the external pins of the
other peripherals (timers, UARTs, etc.) by diverting some bits from the parallel I/O ports. The
flexibility of the ST9 I/O pins allow designers to match the MCU to the application, and not the
application to the MCU.

The ST9 family devices have up to 10 parallel I/O ports which have an additional very flexible
feature. You can independently configure each bit as:

■ an input with two variants (TTL or CMOS),

■ an output with also two variants (open-drain or push-pull),

■ a bidirectional port with either a weak pull-up or an open-drain output side,

■ an alternate function output (that is the output pin of an internal peripheral) with also either
open-drain or push-pull output driver.

Figure 35. ST9 I/O ports configurations

For some peripherals (e.g. ADC), the port that provides the input pins has a special alternate
function mode. This mode disconnects the input buffer from the pin and shorts the buffer input
to the ground. The output buffer is put in high-impedance mode. The pin is permanently con-
nected to the input of the peripheral, thus allowing its voltage to be read at any time.

OUTPUT SLAVE
LATCH

OUTPUT MASTER LATCH INPUT LATCH

INTERNAL DATA BUS

PUSH-PULL
TRI-STATE
WEAK-PULL UP
OPEN DRAIN

TTL
CMOS

ALTERNATE
FUNCTION

(IN)

I/O PIN

OUTPUT

ALTERNATE
FUNCTION

(OUT)

INPUT/OUTPUT
BIDIRECTIONAL

INPUT
BIDIRECTIONAL
ALTERNATE
FUNCTION

CMOS: Vil (max) : 0.3 Vcc Vih (min) = 0.7 Vcc

TTL: Vil (max) : 0.7 Volt Vih (min) = 2.0 Volt
 Vil input low level Vih input high level

INPUT Analog Input
CMOS or TTL level
Schmitt Trigger

OUTPUT Push-pull
Open Drain

BIDIRECTIONAL Weak Pull-up
Open Drain

ALTERNATE
FUNCTION

Push-pull
Open Drain

35/50

PERIPHERALS AND I/O PORTS

Each port is associated with a data register and three control registers. These define the port
configuration and allow dynamic configuration changes during program execution. Port data
and control registers are mapped in the Register File and are treated just like any other gen-
eral purpose register. There are no special instructions for port manipulation: any instruction
that can address a register, can address the ports. Data can be directly accessed in the port
register, without passing through other memory or “accumulator” locations.

2.2 TIMERS

The timer or timing system makes it possible to measure and time external and internal events
without the need to do this with time critical software loops.

2.2.1 Standard Timer (STIM)

The standard timer includes a programmable 16-bit down counter and an associated 8-bit
prescaler with Single and Continuous counting modes capability. It uses an input pin (STIN)
and an output pin (STOUT). These pins, when available, may be independent pins or con-
nected as alternate functions of an I/O port bit.

STIN can be used in one of four programmable input modes: event counter, gated external
input mode, triggerable input mode, retriggerable input mode.

STOUT can be used to generate a Square Wave or Pulse Width Modulated signal.

The input clock to the prescaler can be driven either by an internal clock equal to INTCLK di-
vided by 4, or by CLOCK 2 derived directly from the external oscillator, divided by 64 or 128,
thus providing a stable time reference independent from the PLL programming.

The standard timer end of count condition is able to generate an interrupt which is connected
to one of the external interrupt channels.

PERIPHERALS AND I/O PORTS

36/50

Figure 36. Main features of the STIM

Four registers are used to control the standard timer. You can write in timer registers at any
time while the timer is running. A Debugger option allows you to stop the timer during the Em-
ulation Trap.

2.2.2 Watchdog Timer (WDT)

The Watchdog Timer is similar to the standard timer when working in timer mode. When
watchdog mode is started, only reset can exit this mode.

The main features are almost the same as for the standard timer. Timer registers can be
written at any time even if the timer is running. The counter is also read at any time but the new
value written to the counter is taken into account only at the timer start or at the EOC.

Functional modes
- Single count down

- Continuous count down

Timer architecture

- One 8-bit Prescaler

- One 16-bit Counter

- One Control Logic Register

Timer accuracy
- Min.: 160 ns at 25 MHz

- Max.: 2.68 s at 25 MHz

Timer input clock
- INTCLK/4

- External input clock - Max. = 25/4 MHz

Timer input pin - One configurable input pin - Not on all ST9

Input modes

- External clock

- Gated input

- Retriggerable input

- Triggerable input

Timer output pin - One output pin configurable as AF or IO - Not on all ST9

Output modes
- Square wave generation

- PWM

Interrupts - Interrupt on INTA1 external interrupt channel

37/50

PERIPHERALS AND I/O PORTS

Figure 37. Main features of the WDT

The watchdog timer can be used to:

■ Generate periodic interrupts

■ Measure input signal pulse widths

■ Request an interrupt after a set number of events

■ Generate an output signal waveform

■ Act as a watchdog timer to monitor system integrity

The watchdog timer provides a means of graceful recovery from a system problem. This could
be a software fault, usually generated by external interference or by unforeseen logical condi-
tions, or a hardware problem that prevents the program from operating correctly. This fault
causes the application program to abandon its normal sequence of operation.

If the program fails to reset the watchdog at some predetermined interval, a hardware reset
will be initiated. The bug may still exist, but at least the system has a way to recover. This is
especially useful for unattended systems.

Functional modes

- Watchdog

- Normal Timer

- Single count down

- Continuous count down

Timer architecture

- One 8-bit Prescaler

- One 16-bit Counter

- One Control Logic Register

Timer accuracy
- Min.: 250 ns at 16 MHz

- Max.: 4.19 s at 16 MHz

Timer input clock
- INTCLK/4

- External input clock - If available

Timer input pin - One configurable input pin - If available

Input modes

- External clock

- Gated input

- Retriggerable input

- Triggerable input

Timer output pin - One output pin configurable as AF or IO

Output modes
- Square wave generation

- PWM (software is needed)

Interrupts

- End of count interrupt

- Top level interrupt

- Watchdog reset

Watchdog mode selection

- Software

- Hardware fixed (metal option) - Only on certain devices

- By external input pin

PERIPHERALS AND I/O PORTS

38/50

2.2.3 Multifunction timer (MFT)

The Multi-Function Timer is the most powerful of the ST9 on-chip peripherals. It offers pow-
erful timing capabilities and features 12 operating modes, including automatic PWM genera-
tion and frequency measurement. This allows the ST9 devices to cover most application
timing requirements.

The MFT comprises a 16-bit up/down counter driven by an 8-bit programmable prescaler. The
input clock may be INTCLK/3 or an external source. The timer features two 16-bit comparison
registers, and two 16-bit capture/load/reload registers. Two input pins and two alternate func-
tion output pins are available and independently configurable.

Two input pins, programmable as external clock, gate or trigger, allow 16 modes of operation,
including autodiscrimination of the direction of externally generated signals.

Pulse Width Generation can easily be implemented, using the overflow/underflow signal and
the two 16-bit comparison registers, each of them able to independently set, reset, toggle or
ignore two output bits.

The Multi-Function Timer outputs may also generate interrupts for system scheduling, and
trigger DMA transactions of a data byte to or from a data table in memory.

When two timers are present in an ST9 device, a combined operating mode is available.

Figure 38. An example of the ST9 Multi-Function Timer capabilities

With the MFT, a complex application such as a bar code reader can be implemented with no
CPU intervention by using the DMA and the timer autoclear mode in order to measure sophis-
ticated waveforms.

BAR CODE READER APPLICATION

TIMEOUT (END OF SCAN)

CAPTURE WITH
AUTO-CLEAR, MAX.
RESOLUTION 250nS

START

39/50

PERIPHERALS AND I/O PORTS

2.3 FAST ANALOG TO DIGITAL CONVERTER (ADC)

The Analog to Digital Converter converts an external analog signal (typically relative to
voltage) applied to one of eight inputs into a digital representation using an 8-bit successive
approximation Analog to Digital Converter. The ST9 devices with this feature can be used for
instrumentation, environmental data logging, or any application that lives in analog world.

Figure 39. Analog to Digital Converter

Two type of ADC exist in the ST9 family: a simple ADC and a more sophisticated one (ADC8).
Only the last one is described here.

The 8-channel Analog to Digital Converter (ADC8) comprises an input multiplex channel se-
lector feeding a successive approximation converter. Conversion requires 138 INTCLK cycles
(of which 87,5 are required for sampling), conversion time is thus a function of the INTCLK fre-
quency; for instance, for a 24MHz clock rate, conversion of the selected channel requires
5,75µs. This time includes the 3,64µs required by the built-in Sample and Hold circuitry, which
minimizes the need for external components and allows quick sampling of the signal to mini-
mise warping and conversion error. Conversion resolution is 8 bits, with ±1/2 LSB maximum
non-linearity error between VSS and the analog VDD reference.

The converter uses a fully differential analog input configuration for the best noise immunity
and precision performance. Two separate supply references are provided to ensure the best
possible supply noise rejection and to allow the use of analog reference voltages lower than
the digital VDD supply. In fact, the converted digital value, is referred to the analog reference
voltage which determines the full scale converted value. Naturally, Analog and Digital VSS
MUST be common.

Up to 8 multiplexed Analog Inputs are available, depending on the ST9 device type. A group
of signals can be converted sequentially by simply programming the starting address of the
first analog channel to be converted and using the AUTOSCAN feature.

ANALOG

1

2

3

4

5

ANALOG
SIGNAL

Time

5 4 2 1 1 2

DIGITAL

Voltage
A / D

CONVERTER

PERIPHERALS AND I/O PORTS

40/50

Two Analog Watchdogs channels are provided, allowing continuous hardware monitoring of
two input channels. An interrupt request is generated whenever the converted value of either
of these two analog inputs is outside the upper or lower programmed threshold values, as in
the example below. The comparison result is stored in a dedicated register. This gives you fast
analog data acquisition with minimum CPU intervention.

Figure 40. Analog watchdog for monitoring voltage min./tax levels

Single and continuous conversion modes are available. Conversion may be triggered by an
external signal or, internally, by the Multifunction Timer.

A Power-Down programmable bit allows the ADC to be set in idle mode to reduce the power
consumption of theST9.

The ADC’s Interrupt Unit provides two maskable channels (Analog Watchdog and End of Con-
version) with a hardware fixed priority, and up to 7 programmable priority levels.

2.4 SERIAL INTERFACE

Serial interfaces are used to exchange data with the external world. ST9 microcontrollers have
both asynchronous and synchronous on-chip communications peripherals. The asynchronous
interface is called Serial Communication Interface (SCI) and the synchronous interface is
called Serial Peripheral Interface (SPI). A typical SCI application is for connecting a PC for de-
bugging purposes while a typical SPI application is for connecting an external EEPROM.

A synchronous bus includes a separate line for the clock signal which simplifies the transmitter
and receiver but is more susceptible to noise when used over long distances. With an asyn-
chronous bus the transmitter and receiver clocks are independent, and a resynchronization is
performed for each byte at the start bit.

INPUT
VOLTAGE

CONVERSION
RESULT

INTERNAL
TRIGGER

1 2 3 4 5 6

UPPER
INT INT

INT

THRESHOLD

THRESHOLD

LOWER

Analog to Digital conversions

41/50

PERIPHERALS AND I/O PORTS

Figure 41. Synchronous and asynchronous communications

2.4.1 Universal Serial Peripheral Interface (SPI)

The Serial Peripheral Interface is a synchronous input-output port that you can configure in
various modes, including S-bus. It has many uses, of which two are: interfacing with serial-ac-
cess EEPROMs, and interfacing with a liquid-crystal display.

The ST9’s universal Serial Peripheral Interface, providing basic I²C-bus, Microwire-Bus and
S-Bus functionality, allows efficient communication with low-cost external peripherals or serial
access memories such as EEPROMs.

The main block of the SPI is an 8-bit shift register which can be read or written in parallel
through the internal data bus of the ST9, and that can shift the data in or out on two separate
pins, named SDI and SDO, respectively. The serial transfer is initiated with a write to the SPI
Data Register (SPIDR). Input and output are done simultaneously, each most significant bit
being output on SDO while the level at SDI becomes the least significant bit. Each time a bit
is transferred, a pulse is output on the SCK pin. When eight bits are transferred, eight pulses
have been sent on SCK, and the process stops. Depending on the interrupt control bits set in
the SPI Control Register (SPICR), an interrupt can be requested on end of transmission. To
summarise:
- Transfers are started by writing a byte into the SPI data register
- Input and output are done at the same time
- Input and output are done most-significant bit first

SYNCHRONOUS ASYNCHRONOUS

0 b b b b b 1

CLOCK

b b b DATA

CLOCK

+
DATA

b b
Start Stop

b b

PERIPHERALS AND I/O PORTS

42/50

2.4.2 Comprehensive serial communication Interface (SCI)

The SCI is the association of a UART which offers all the usual functions for asynchronous
transfer and a complex logic that handles tasks such as character recognition and DMA. It can
also work as a simple serial expansion port that then resembles the SPI.

Serial communication is easily implemented, using formats and facilities offered by the ST9
Serial Communication Interface. This peripheral provide full flexibility in character format (5, 6,
7, 8 databits), odd, even or no parity, address bit, 1, 1.5 or 2 stop bits in asynchronous mode,
and an integral baud rate generator allowing communication at up to 370 kbaud in asynchro-
nous mode or 1.5 Mbytes/s in synchronous mode.

Industrial, telecom and communication systems users can also benefit from the self-test and
address bit wake-up facility offered by the character search mode. Using the SCI, sophisti-
cated high speed serial data communication can be implemented by simply selecting of the
built in operating modes. For example, the SCI is able to automatically search for a character,
or for its own address in a network environment.

43/50

DEVELOPMENT TOOLS

3 DEVELOPMENT TOOLS

3.1 SOFTWARE TOOLS: GNU C TOOLCHAIN

The programming tools available for the ST9 are known as GNU-9 tools. This GNU toolchain
offers you a full set of resources for the development of code for the ST9 microcontroller. This
consists of the optimized GNU C compiler, the macro-assembler, the linker/loader and the li-
brary archiver. Program debugging is made easier with the C language source level debug-
ging which runs under Windows.

The GNU-9 is a set of MS-DOS programs that can be driven from a single program called
GCC9. This program is capable of calling the following programs in turn:

Main block name File name Block name Action

C-compiler ccp9 C pre-processor Expands the macros, inserts the
include files, removes the disabled
conditional compilation blocks

cc9 C-compiler Translates C-code into assembly
source text.

Macro-assembler tr9 Assembler pre-
processor

Expands the macros, inserts the
include files, removes the disabled
conditional compilation blocks.

gas9 Assembler Translates assembly language into
machine code.

Linker ld9 Linker Links the different object files, posi-
tions the code at predefined addresses
in memory.

DEVELOPMENT TOOLS

44/50

3.1.1 GNU C compiler

The GNU C compiler for the ST9 allows you to write C source code using traditional C
(Kernighan & Ritchie), ANSI C, or GNU extensions and to produce assembly language source
code. You can use all standard types (char, int, short, long, signed or unsigned, float and
double) in your code. The libraries which are delivered with the compiler, include string han-
dling, conversion, I/O routines and mathematics. You have direct access to the Register File
of the ST9, allowing access to all registers and on-chip peripherals.There are also some op-
tions for generating code for one or two memory spaces, one or two stacks and interrupt rou-
tines.

The C compiler allows inclusion of assembly language instructions with access to C program
symbols. This means that the generated assembly source file may include interleaved C lines
and assembly languages lines, and provide information for source-level debugging.

When used with the Assembler and Linker, it allows the generation of executable object code
for all members of the ST9 family.

3.1.2 Assembler

The Assembler pre-processor allows macro substitution, file inclusion, conditional assembly,
pseudo-instructions and pseudo-macros. Source level debugging information is generated
with the object file by the assembler.

3.1.3 Linker

The Linker combines object code files issued by the assembler. It resolves references to ex-
ternal symbols and searches libraries for the required modules to produce an output file in a
binary format, downloadable by the debugger to the ST9 emulator.

A map file is generated, including all mapping information on sections, files, and symbols.
Separate files are produced to support the ST9 MMU mechanism.

3.1.4 Debugger

The ST9 Debugger allows source level debugging of C language and assembly language pro-
grams, even with optimized C language programs.

The debugger is able to generate trace information, with hardware information interleaved
with source lines, and to display the local symbols of the current C procedure and the stack
based on the C language source level.

45/50

DEVELOPMENT TOOLS

Figure 42. Windows based Debugger

The Windows based debugger provides a user friendly and highly flexible interface which may
be configured to precisely match the user’s requirement. Breakpoints allow the MCU to be
halted when the application software accesses specific addresses or addresses within a se-
lected range or on data fetch cycles. You may then read and modify any register and memory
location. An on line assembler/disassembler is also available to ease debugging.

An important feature of the ST9 development system is that true source level debugging is
possible, meaning code may be viewed at source level and breakpoints may be set on high
level code, rather than on disassembled target code. This is much more meaningful to the
user and results in a friendly and productive development environment.

"c"
 breakpoint

inquiry on
the "c"
variable
"buffer"

assembler
 breakpoint

DEVELOPMENT TOOLS

46/50

3.2 HARDWARE TOOLS

The development system is controlled by a Host PC on which the Windows based debugger
runs. The Host PC is simply connected to the mainframe by means of a parallel port.

Once assembled, and/or compiled and linked, the application software may be downloaded to
the real-time emulation memory, which you can configure, map and modify as required. The
device probe is then connected to the application target hardware in place of the MCU and
real-time emulation of the target application can begin, thus allowing sophisticated testing and
debugging of both application hardware and software

3.2.1 Real-time development tools

The ST9 real-time development tools consist of various hardware and software components,
which together form a flexible and powerful system designed to provide comprehensive devel-
opment support for the ST9 family of MCUs.

The Hardware Development System (HDS2) mainframe, in conjunction with the probes for
specific devices, allows emulation and development for the ST9 device family.

Figure 43. Emulator with its probe plugged in an application board

The WGDB9 Windows GNU Debugger software suite is supplied with the Emulator hardware,
in addition to the conventional DOS ST9 Software suite, which includes a macroassembler, a
linker/loader. The Windows based debugger provides a user friendly and highly flexible inter-
face which may be configured to precisely match the user’s requirements. All emulator set-
tings are accessible via the control software.

47/50

DEVELOPMENT TOOLS

A completely integrated trace facility is available. This hardware implemented function fea-
tures 4KByte of 44-bit wide trace memory; sequential conditions may be defined on memory
events; one breakpoint on a data value may also be set. One external signals is input on a
subclic connector which can generate a breakpoint.

Trace memory events may be used as breakpoints or to enable or disable the trace recording
feature. This powerful tool enables the user to detect and trap virtually any pattern, and thus
rapidly debug the target application.

Log files offer the ability to send any screen display to a text file. In particular, log files are very
useful to save the contents of the logic analyser and/or the contents of data registers to be
subsequently analysed or printed.

Command files can be used to execute a set of debugger commands in batch mode, to sim-
plify and speed up the emulation session.

Finally, when the target program is fully debugged, the appropriate ST9 EPROM/OTP pro-
gramming board can be used to program the EPROM/OTP version of the target device to
allow stand-alone testing and evaluation.

DEVELOPMENT TOOLS

48/50

3.2.2 EPROM programming boards

These boards are a programming tool for EPROM and OTP members of the ST9 family.

Figure 44. EPROM programming board

The EPROM programming board is designed to program the EPROM versions of microcon-
troller, including both the ceramic windowed and plastic OTP packages. Several sockets are
provided to receive the different existing packages types.

The EPROM programming board uses a RAM in which your code is downloaded. The
EPROM device will be programmed from the contents of this RAM.

The board can perform three operations:

■ verify the blank state of the microcontroller EPROM;

■ program microcontroller with the content of hexadecimal file;

■ verify the microcontroller.

49/50

DEVELOPMENT TOOLS

3.2.3 Gang Programmer

The Gang Programmer consists of two components: a base unit common to all ST9 devices
and a Gang Programmer Adaptor (GPA) module to suit each package type. It is capable of si-
multaneously programming up to ten EPROM or OTP MCUs. The pass or fail status for each
device is indicated by 2-color LEDs.

Figure 45. Gang programmer

DEVELOPMENT TOOLS

50/50

NOTES:

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without the express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

1999 STMicroelectronics - All Rights Reserved.

Purchase of I2C Components by STMicroelectronics conveys a license under the Philips I2C Patent. Rights to use these components in an
I2C system is granted provided that the system conforms to the I2C Standard Specification as defined by Philips.

STMicroelectronics Group of Companies
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain

Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com

