
Quick and EZ Guide to USB

Welcome to the world of USB! USB (Universal Serial Bus)
promises to solve many of the legacy problems of the past.
We’ve all experienced the frustration when we add a modem,
scanner, or any other peripheral to our system and it simply
didn’t work. What’s worse, we don’t know where to start to find
the problem and agonize over having to be on hold for hours
at your nearest help line. With major industry support, USB is
focused on eliminating these frustrations, making computer
systems simpler and easier for the average consumer. USB
has such sweeping implications that it will extend past PC
platforms and into many household consumer products which
have an embedded microprocessor and attachment configu-
ration.

This quick and EZ guide is intended to get you familiar with
the basics of USB in 30 minutes. We cover the basics of USB
topology, hardware, and software issues. We also have point-
ers on how to you can quickly be up and running with USB
traffic in hours using Cypress’s innovative architecture.
Cypress’s focus is to make USB design the EZiest in the mar-
ket so that the peripheral manufacturer can quickly get to mar-
ket with a cost effective solution. There is a glossary so that
you can talk USB speak.

USB Objectives
USB brings the ultimate in simplicity when connecting periph-
eral devices. The user no longer needs to determine the right
connection for the mouse versus the keyboard. There isn’t a
different cable for the monitor, printer, or high storage capacity
external disk drive. The user never has to determine if the
connection is a parallel or serial port. In the world of USB,
there are no longer dip switches, jumpers, IRQ conflicts, and
DMA conflicts. In fact, users will always be able to connect or
disconnect a new device when the PC is up and running. Now
that’s true Plug and Play! Because of this consistency and
simplicity of connection, USB will make it easy to add periph-

eral types that were previously thought to be too difficult for
the average user.

A major objective of USB is to ensure that it is all encompass-
ing, supporting non-real time data transfers, such as those
used in text, email, and graphics, as well as time sensitive
data such as audio, voice, and compressed video. Another
major objective of USB is to ensure the implementation is cost
effective. While a USB host controller connection will support
12 Mbps serial data rates, a lower rate at 1.5 Mbps was cre-
ated so that less expensive cables and components could be
used. Such low-speed devices as mice and keyboards do not
require the full 12 Mbps bandwidth. However, such low-speed
peripherals benefit greatly from the standardization and ease
of use of USB.

USB Hardware
USB Bus Topology

The USB bus topology is known as a tiered star topology. The
root of the star is the host controller. The USB host is located
on the motherboard and normally is integrated into the core
logic chip set. There is only one host that controls the entire
system in a standard USB system. The host controller sched-
ules transactions that are passed back and forth throughout
the system to the various peripherals. If the host controller is
busy, then all the attached peripherals must wait for the host
controller to free itself before further communications can oc-
cur.

While a peripheral can be connected directly to the host con-
troller port, it is more likely that a USB hub will be connected
to the host controller port to expand the number of peripheral
ports available to the user. Hubs permit expansion of a USB
system by providing one or more additional USB ports for
attaching other USB devices. Peripherals (or another hub) is
attached to the hub, creating the star topology. (See Figure 1.)

USB
HUBS

HOST
CONTROLLER
(ROOT HUB)

USB
PERIPHERALS

PC

MONITOR/HUB

MODEM
PHONE

STANDALONE
HUB

VIDEO
CAMERA KEYBOARD

MOUSE

Figure 1.
Cypress Semiconductor Corporation • 3901 North First Street • San Jose • CA 95134 • 408-943-2600
February 2, 2000

EZ-USB IO Ports
Since a hub can connect with other hubs, this creates multiple
tiers of peripheral stars in the bus topology. A USB hub con-
sists of two major functions: a hub controller and repeater.
The repeater function takes the communication packets and
“boosts” them up to the host controller (or another hub) or
back to the peripheral. USB hubs come in two types: stand-
alone or compound device. Standalone hubs typically have 4
expansion ports. Alternatively, a hub that combines other
functions such as the keyboard and monitor is known as a
compound device.

The last leg of the star is the peripheral. Peripherals can have
a single function, or can be combined with multiple functions.
Multiple-function peripherals are known as composite devic-
es (as opposed to the compound device for hubs). Cypress’s
USB solutions are well-suited for composite peripheral devic-
es since the configurable architecture allows the support of
multiple functions. As mentioned previously, peripherals are
categorized as fully rated at 12 Mbps or low-speed at 1.5
Mbps.

USB Connections

One of the great outcomes from the conversion to USB is the
simplicity of connections. There are only two types of connec-
tions for all hubs and peripherals. It is literally impossible for
the user to screw the connection up as the two types of con-
nectors are physically incompatible. The connector that is
nearest the host controller or the hub (the upstream side) is
called a Series A connector and is shaped in a rectangular
fashion (see Figure 2).

The connector that is nearest the peripheral or downstream
side is called the Series B connector and is a more square
shape with two corners shaved for orientation purposes.
While the host controller will only have Series A connections,
hubs have both Series A and Series B connections. If the
peripheral has a cable attachment it will have a Series A plug

at the other end to attach to a hub or the host controller port.
With the tiered star topology, the Series A connection is al-
ways at the upstream portion of the star while the Series B
connection is at the downstream connection (see Figure 3).

For fully rated connections at 12 Mbps, the cable length can
extend up to 5 meters. For low-speed peripherals, the cable
is limited to 3 meters between connections. Fully rated USB
cables are shielded, providing higher performance and longer
length capability. Low-speed cables are unshielded, yielding
lower cost.

Another aspect USB simplifies is the actual wire connection
between devices. Instead of a variety of different cables which
differ in the number of signal wires, all USB connections use
four wires. Two are for the power supply (power and ground),
and two for differential signaling (D+ and D–). A fully rated
peripheral is identified by a 1.5-kΩ pull-up resistor on the D+
line. A low-speed peripheral is identified by the system by a
1.5-kΩ pull-up resistor on the D– line.

Power

All USB ports supply power for devices that are to be at-
tached. Both hubs and peripheral may be self-powered, im-
plementing your own power-supply, or be bus-powered. Bus-
powered hubs and peripherals derive their entire power re-
quirements from the USB cable. A fully rated port must be
able to handle 500 mA of current to an attached device. Self-
powered hubs can usually supply the maximum ratted power
each port. However, bus-powered hubs have only the power
they receive from the upstream cable, severely limiting their
ability to supply full current needs of a peripheral. For devices
that are attached to a bus-powered hub, the maximum
amount of current they can draw is 100 mA.

Prior to being configured, USB devices must not draw more
than 100 mA of current. After configuration, the peripheral can
draw more current based on the configuration setting.

USB has numerous power conservation modes. One is sus-
pend, an option whereby power consumption is curtailed
through software control. There are two types of suspend:
global and selective. All devices must support both types of
suspend modes. Global suspend places all USB devices in a
suspended state. Selective suspend places only devices
which have been inactive in a suspended state. Devices enter
suspend after 3 ms of no bus activity and must consume no
more than 500 µA total. The suspend current of 500 µA is

Figure 2.

P C

M O N I T O R

P H O N E
ser ies A connectors

ser ies B connectors

U S B
F U N C T I O N S

A A

B
B

B

A A

B

Figure 3.
2

EZ-USB IO Ports
more difficult to achieve than it may seem, as 200 µA is used
due to the 1.5-kΩ pull-up resistor, leaving only 300 µA for the
rest of the device peripheral.

The EZ-USB family is designed to operate at extremely low
power; it is one of the few USB devices able to operate at
3.3V. With this low power, it is ideal for bus-powered high-
speed peripherals.

USB Software
USB Communication Model

Now here is the hard part. Because USB simplifies hardware
connections, the complexity shifts to a protocol that can ac-
commodate the variety of peripheral devices. Although the
bus topology of a USB system has multiple tiers of communi-
cations through hubs, the communication can be modeled
from the USB host to the peripheral as a one-to-one connec-
tion. This is referred to as logical connections to the USB host.

At the center of the communication model is the USB host,
which is the master of the USB system. The USB host acts
as a traffic cop, controlling and scheduling all activities at-
tached to the port. This is called a host-based communication
model. The USB host is the only device that uses system
resources requiring host memory locations, I/O address
space, and IRQ lines. Remember, USB peripherals are no
longer mapped into memory or I/O address space, nor do
they use IRQ lines or DMA channels.

The USB host controller initiates transactions via its root hub
or hubs. The host controller initiates a start of a frame (SOF)
every 1 ms. After the SOF, communication transactions be-
tween the hubs/peripherals and the host occur within the 1
ms time frame. The host may schedule a single data transfer
by the peripheral over one large block within a 1-ms frame or
over several consecutive frames. The actual scheduling de-
pends on a number of factors including: transaction traffic,
type of transaction, and bandwidth requested by the periph-
eral.

When a USB peripheral initiates a transfer, it calls the USB
system software and requests a transfer. The host will either
accept the data transfer or reject the request. If the host ac-
knowledges (ACK) the request, then an entire routine, which
consist of setup, data transfer, and handshake occurs. If the
host rejects the request, then a Not Acknowledgement (NAK)
is sent back to the peripheral. The peripheral will then repeat
the request, waiting for an acceptance from the host for the
transfer request.

USB Data Types and Endpoints

In line with achieving simplicity, USB categorizes the various
data types into four specific data forms used for all peripheral
functions. USB can be connected to support non-time sensi-
tive data types such as print, text, or graphics data, or real-
time data such as audio, voice, and compressed video. To
accommodate the various data types there are four USB data
transfer types: control, isochronous, bulk and interrupt.

Control transfers are bidirectional and intended as the prima-
ry communication between host and device for configuration,
command or status information. Control transfers consist of 2
or 3 stages; a setup stage, data stage (may or may not exist),
and status stage. Cyclic redundancy checks (CRC) are per-
formed on control packets. Since accuracy is important for
control packets, retransmission occurs for unrecoverable er-
rors. Because the control transfers have two or three stages,

they are completed over a few USB frames. Control transfers
are given a guaranteed 10% bus allocation. Control packets
have a maximum length of 64 bytes.

Isochronous transfers can be unidirectional or bidirectional
and are specifically targeted for streaming data such as audio
or video. Since isochronous data is time sensitive, it is guar-
anteed access to USB with reasonable limitations on the
bandwidth of the whole USB bus. Should an error occur, the
peripheral device will not retry to transmit data since constant
data rate is the more important than accuracy of data.
Streaming data is more tolerant of errors. The maximum
packet size for isochronous transfer is 1024 bytes per ms.
This translates to a maximum data rate of 8.814 Mpbs.

Bulk transfers can be unidirectional or bidirectional. They are
ideal for large amounts of data whose integrity must be guar-
anteed, but whose delivery is not time critical. Printer data or
scanner data are natural candidates for transmission via a
bulk transfer. A bulk transfer is designed to be a filler, claiming
unused bandwidth of USB when other transfer requirements
on the bus have been met. All forms of error detection and
recovery are used. Maximum packet size for bulk transfers is
64 bytes.

Interrupt transfers are not interrupts in the standard sense of
interrupts used by PC platforms. Instead they are used to poll
devices to determine if they have data that needs to be trans-
ferred to the host. Hence, the direction of interrupt transfers
are always from the USB peripheral to the host (IN only). If a
device does not have data to send, then the device returns a
no acknowledge (NAK) indicating no data available. Delivery
is guaranteed. Maximum packet size for interrupt transfers is
64 bytes. Interrupt OUT packets have been proposed for the
next version of USB (Version 1.1).

Central to the USB communication model is the abstract con-
cept of transferring data using pipes between the host and
peripherals. This pipe medium can be further distributed into
even smaller pipes, with each type of data requiring a sepa-
rate tiny pipe. Each tiny pipe (endpoint) carries a unique data
type that is needed between the peripheral and the host. For
instance, in a multimedia USB device, different endpoints
would be required for voice (isochronous), data (bulk), and
control information. Thus a total of 5 endpoints are required,
since two endpoints are needed for bidirectional data (see
Figure 4). All these data types must be treated differently and
are separated through the use of endpoints.

The Cypress EZ-USB family has the most endpoints available
in the market, supporting the maximum number of 31 end-
points allowed in the USB specification. With the vast number
of endpoints, users have the flexibility to assign different buff-
ers for each individual data stream, instead of consolidating
various data streams into a single data type to be used for
transmission. In addition, these endpoints can be pro-
grammed to be double-buffered, which improves transfer
bandwidth in some applications.

Software Development
While the concept of USB is simple, the development of USB
peripherals is not. Since the hardware scheme has been ex-
tremely simplified, the burden of complexity has moved to-
ward software development. There will be a minimum of two
software developers needed to address two areas of devel-
opment required for USB: the firmware side and the driver
side.
3

EZ-USB IO Ports
Initialization
Enumeration/Renumeration

Host software is responsible for detecting and configuring the
hub controller and peripheral devices. The process of identi-
fying and assigning an address to each USB device on the
hub is called device enumeration. Enumeration occurs during
power-up or when the peripheral is first plugged into a USB
port. Now each peripheral has a unique identifier so that the
host controller can individually address each device in the
star topology. After an address is assigned, the host reads
and evaluates configuration information from the device de-
scriptors passed from the device to the host. The host evalu-
ates whether the resources requested by the device are avail-
able. If the host determines that bandwidth is available, the
host assigns a configuration value to the device and is ready
for use.

Renumeration is a proprietary Cypress-specific capability
that allows a device to reconfigure itself after enumeration has
occurred. When the driver is installed, a new set of firmware
can also be loaded into the EZ-USB RAM core. This changes
the “personality” of the device. Normally a device would have
to be physically disconnected before another enumeration
process will occur. However, with Cypress EZ-USB devices,
a disconnect is simulated and another enumeration sequence
occurs (see Figure 5). The new set of device descriptors are
loaded into the USB device. This feature allows the peripheral
manufacturer to provide continual updates to users via either
floppy disk or through the Internet since 8051 firmware is con-
tained in software files not in nonvolatile memory.

Firmware
The 8051 is the most popular microprocessor standard, mak-
ing it a perfect fit for USB peripheral functions. With the numer-
ous vendors supplying 8051-compatible devices and the pleth-
ora of 8051 development tools from third-party vendors, the
8051 provides a well understood and stable environment for
code development. An excellent source for finding develop-
ment tools for embedded processors is the Miller Freeman Di-
rectories. Their Web Site, located at www.directories.mfi.com,
provides a listing of 8051 compilers, assemblers, and debug-
gers for development.

To efficiently develop 8051 firmware code, the designer will
need a minimum of three items; 8051 assembler and/or com-
piler, ROM/RAM downloader, and 8051 debugger. To further
decrease the learning curve and development, the designer
should have access to example code, firmware library, and an
USB bus analyzer. A listing below provides a quick summary
and potential sources for these tools.

H O S T PERIPHERAL

 BULK OUT

 BULK IN

 CONTROL OUT

 CONTROL IN

 INTERRUPT IN

ENDPOINTS

Figure 4.

Item Needed Source

Required
or

Optional?

8051 Assembler and/or
Compiler

Keil, Tasking, or PLC Required

ROM/RAM Downloader Vendor Required

8051 Debugger Keil, Tasking, or PLC Required

Example Code Vendor Optional

Firmware Library Vendor Optional

USB Bus Analyzer CATC Optional
4

www.directories.mfi.com

EZ-USB IO Ports
One of the major features of the Cypress EZ-USB family is
the significant reduction of 8051 firmware code. In most ap-
plications, endpoint zero is the most complicated to program
as it is usually designated the CONTROL endpoint. Each de-
vice must implement a default CONTROL endpoint (always
endpoint zero) used for configuring the device, controlling de-
vice states, and other aspects of the device’s operation. Thus
endpoint zero is the most complicated to program as it re-
quires a setup stage, data stage (may or may not exist), and
status stage. With other USB chip solutions, endpoint zero is
handled similarly to other endpoints. The EZ-USB core pro-
vides extensive logic to simplify programming required to sup-
port endpoint zero. The use of this higher level protocol can
reduce the number of standard 8051 assembly calls by as
much as 80%. For example, the USB hardware core keeps

track of the three phases for CONTROL (SETUP, DATA, and
HANDSHAKE) not the 8051. Therefore, the CPU needs only
to load an address pointer to requested data

When the designer first connects their USB prototype to the
PC, most likely the system will not operate properly. When a
peripheral device is initially connected to the PC, a host con-
troller issues standard USB commands, inquiring about the
resources of the peripheral. Normally, the designer cannot
pretest responses to the host controller as there is no method
for the designer to control commands issued by the host con-
troller. However, with the EZ-USB Xcelerator Development
Kit, a custom application developed by Cypress (EZ-USB
Control Panel) provides the firmware developer the ability to
manually issue host commands to the peripheral and see the

Host ident i f ies device
is at tached

HOST DEVICE

Host ass igns unique
address to device

Device provides ini t ial
device descr iptors

Host issues conf igurat ion
to be used by device

Host loads new f i rmware
from S/W f i le

Device d isconnects
and reconnects

Host begins
"Enumerat ion" again

Host ver i f ies new
resources avai lable

E
N
U
M
E
R
A
T
I
O
N

Device prov ides updated
config info to host

Host issues conf igurat ion
to be used

R
E
N
U
M
E
R
A
T
I
O
N

Figure 5.
5

EZ-USB IO Ports
corresponding peripheral response. This allows the firmware
to be coded and tested with all host controller commands be-
fore ever being coupled with a driver. With this unique tool,
firmware designers can now see if their firmware has been
properly coded without the necessity of a software driver. This
allows more efficient and faster firmware code development.

Device Driver
If the driver is bundled with the operating system, the periph-
eral manufacturer does not need to develop the driver. All that
is required is to follow the USB device class specifications as
stated by the specific class that corresponds to the device. If
the peripheral designer has capabilities that differentiate its
capabilities above the standard class specifications, then a
custom driver is required. Designers will need the standard
development kits, DDK, from Microsoft to develop these driv-
ers. The DDK is needed for a set of operating system libraries
and Windows driver development tools. Of course, a standard
C compiler for a number of different sources is needed to
generate object code of your WDM driver. The driver needs
to account the operating system during the development
stages. It should operate in a Windows 95 operating system
with an enhancement called OSR 2.1 (OEM Software Re-
lease 2.1). This is also codenamed “Detroit”. Should the soft-
ware developer want device drivers focused on the next-gen-
eration operating system (Windows 98), codenamed
“Memphis”, the developer will need to develop under the
WDM (Windows Driver Model) stack.

An example code of drivers will accelerate the learning curve
significantly. Cypress provides a set of example drivers in ad-
dition to a set of generic drivers to accelerate peripheral driver
development. Of course users will still be able to utilize the
standard set of Microsoft drivers that cover a family of class
drivers. A listing below provides a quick summary and poten-
tial sources for tools needed for device driver development.

In addition, Cypress supplies source code for downloading
8051 firmware and device driver code during the Renumera-
tion process. Cypress supplies this type of code to take ad-
vantage of this unique capability for “soft configuration”.

Application/User Software
For the host application development, users only need to
have a C Compiler or a Visual Basic software tool. A good tool
is the Microsoft Visual C++ Developer Studio AppWizaard. In
addition, application notes and applets to assist in the repro-
gramming and downloading new firmware would be helpful.

What Makes EZ-USB So Easy?
Cypress realizes that most peripheral manufacturers do not
want to or need to become USB experts in order to take ad-
vantage of the benefits of USB. Because of proprietary capa-
bilities and forethought to a much-improved USB architecture,
Cypress can get peripheral designers up and running USB
traffic within hours instead of the months from other USB chip
vendors. A summary of these unique advantages is provided
below.

1. Cypress has the competitive advantage of generating
8051 firmware code for the enumeration process without
one line of user code written by the peripheral manufactur-
er. This allows the designer to analyze USB traffic, increas-
ing the learning curve for understanding USB program-
ming requirements. Because of its proprietary capability of
“soft configuration” and Renumeration, user-developed
8051 firmware code can supplant the default 8051 firm-
ware code residing inside the chip.

2. Cypress uses a higher level protocol for generating 8051
code simplifying firmware code by as much as 80%. With
other USB chip solutions, endpoint zero is handled simi-
larly to other endpoints. The EZ-USB core provides exten-
sive logic to simplify programming required to support end-
point zero. For example, the USB hardware core keeps
track of the three phases for CONTROL (SETUP, DATA,
and HANDSHAKE) not the 8051. Therefore, the CPU
needs only to load an address pointer to requested data.
For further programming simplicity, the EZ-USB core pro-
vides two buffers for endpoint zero data.

3. The Cypress EZ-USB family uses an enhanced 8051 core
for processing. The enhanced 8051 core runs 5 times fast-
er than the industry-standard 8051, providing significant
horsepower to handle the toughest of USB traffic and re-
quirements. With the numerous vendors supplying 8051
compatible devices and the plethora of 8051 development
tools from third-party vendors, the 8051 core provides a
well understood and stable environment for code develop-
ment The enhanced 8051 core contained in the EZ-USB
family is binary code compatible and performs the same
functions as with the industry-standard 8051. The effects
of these instructions on bits, flags, and other status func-
tions are identical to the standard 8051.

4. RAM architecture provides design and software flexibility.
With 4, 8, or 16 Kbytes of SRAM, users have a complete
solution that also provides a “soft” configuration capability.
This “soft” configuration enables peripheral manufacturers
complete flexibility with no design risks. Peripheral manu-
facturers can accommodate code changes due to field up-
dates, last minute software code changes prior to produc-
tion, or dynamic changes in peripheral properties as set by
the user.

5. Pin-compatible and software-compatible family provides
numerous options without design risk. RAM-based USB
solution will allow customers to continue their design ef-
forts even after production has begun and not worry about
having adequate inventory for ROM-based devices during
the critical ramp-up stage. With a growth path from 4K to
8K to 16K memory, parallel board development can occur
without concern to program code expansion effecting
hardware changes.

Item Needed Source

Required
or

Optional?

WDM DDK Microsoft Required

C Compiler Various Required

Soft ICE (In-Circuit Emulator) NuMega
Technologies

Optional

Example Code Vendor Optional

Generic Compiled Drivers Vendor Optional

Driver Loader after
Enumeration

Cypress Optional

USB Bus Analyzer CATC Optional
6

EZ-USB IO Ports
6. Tiny footprint provides more flexibility in board design. Re-
quiring less than 1 square inch of board space for a total
USB solution, the AN2131Q can minimize the precious
board space of cost-sensitive peripherals.
© Cypress Semiconductor Corporation, 2000. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.

