
Cypress Semiconductor Corporation • 3901 North First Street • San Jose • CA 95134 • 408-943-2600
February 25, 2000

Soft USB Controller Design Challenges

Implementing peripheral solutions for an emerging bus stan-
dard such as USB is challenging. Peripheral developers must
be responsive to external, co-developed variables. For USB,
these variables include functionality with various host plat-
forms (using different chip sets and BIOS), various releases
of the host's operating system, and a continual evolution of
peripheral device classes. A good way to accommodate USB
development changes is to create USB controller chips that
operate “soft”, that is from code downloaded from the host
computer into on-chip RAM, rather than using the traditional
ROM approach.

On the surface it seems an easy matter to download code
over the USB and then execute the code to function as a USB
peripheral device. However, the USB Specification allows a
device to enumerate only once, so there is an inherent conflict
between the device that downloads code and the resultant
device that executes the custom application. This paper de-
scribes the problem in detail and outlines the novel solution
embodied in the EZ-USB chip family.

The objective is a soft, single-chip USB peripheral solution.
One side of the device receives and sends USB traffic, while
the other side interfaces to the device’s peripheral circuitry.
Program code and data are stored in volatile RAM, which is
downloaded from the host via the USB channel (Figure 1).

When the chip powers on, there is no code in RAM and the
CPU is held in reset. To understand the requirements of a
“soft” architecture, it is helpful to review the anatomy of a USB
peripheral device from the inside out. The special measures
required to implement the soft feature are then apparent.

The Basic USB Interface
Inside every USB peripheral is a Serial Interface Engine (SIE)
(Figure 2). The SIE:

• Serializes and deserializes USB data.

• Decodes the NRZI format used by USB.

• Transfers bytes to and from the device.

• Handles bit stuffing.

• Checks the USB data for validity using CRC fields.

• Handles bus signaling like reset, suspend, and resume.

• Re-tries certain USB transfers if errors are encountered.

The SIE is roughly analogous to the UART chip connected to
a serial port. Serial data enters and leaves the SIE, and par-
allel bytes are delivered to, and accepted from, the peripheral.
However, USB is much more complex than a serial port. The
following two examples illustrate some added complexity.

What the SIE Does
Figure 3 provides a simple example of what the SIE does.
USB traffic is shown at the top of the illustration, with time
traveling from left to right. This USB transaction represents a
USB Bulk data transfer.

A USB transaction consists of data packets identified by spe-
cial codes called Packet IDs (PIDS). The bulk transfer uses
four PID types: OUT, DATA0, DATA1, and ACK.

The first packet is an OUT token, announcing that the host is
about to send data to the peripheral. (USB direction is host-
centric, OUT means host-to-device.) The second packet con-
tains the DATA1 PID followed by a block of bytes labeled “Pay-
load Data”. The device indicates successful receipt of the
data by sending the ACK PID in the third, handshake packet.
The host then sends another OUT token, this time using the
DATA0 PID, followed by more data and the device’s ACK.

The two data PIDS, DATA0 and DATA1, provide data security
beyond CRC checking to guard against corrupted hand-
shakes, and to maintain synchronism throughout long bulk
transfers. Bulk data is transferred using alternating DATA0/1
PIDS. The host and peripheral maintain “data toggle” bits that
are complemented when data is successfully sent and ac-

86%

)XQFWLRQ

7UDIILF

(QKDQFHG

����

&RUH

���9� ���0+]�

��FORFN F\FOH

3URJUDP

DQG

'DWD

5$0

,�2

Figure 1. The Objective: SOFT

6HULDO

,QWHUIDFH

(QJLQH

�6,(�

'�

'�

%\WHV

86%

7UDQVFHLYHU

Figure 2. The Basic USB Interface

Soft USB Controller Design Challenges

2

knowledged. If either side fails to read a correct handshake,
it does not flip its data toggle, causing a mismatch with the
next data PID. This initiates a retry. All of this is handled au-
tomatically by the SIE.

A USB Control Transfer
Figure 4 illustrates a more complex USB operation: the SIE
helps to process USB protocol information. The protocol layer
responds to standard USB requests. The protocol layer can
be implemented in logic or with the aid of a CPU. Figure 4
shows a USB transaction called a CONTROL transfer.

CONTROL transfers consist of two or three stages, SETUP,
STATUS, and an optional DATA stage. This example uses a
DATA stage. The “Intelligence” block first decodes the host
request using the eight Setup Data bytes from the SIE. In this
example, the host has requested data from the peripheral
(such as a “Get_Descriptor” request). The “Intelligence” block
decodes the request from the eight SETUP bytes, retrieves
the requested data from internal memory, constructs packets
of the proper size, and sends them back through the SIE for
USB transmission. After the data has been transferred, the
“Intelligence” block commands the SIE to ACK the STATUS
phase to conclude the CONTROL transfer.

6HULDO

,QWHUIDFH

(QJLQH

�6,(�

'�

'�

86%

7UDQVFHLYHU

6

<

1

&

2

8

7

$

'

'

5

(

1

'

3

&

5

&

�

7RNHQ 3DFNHW

6

<

1

&

'

$

7

$

�

3D\ORDG

'DWD

&

5

&

�

�

'DWD 3DFNHW

6

<

1

&

$

&

.

6

<

1

&

2

8

7

$

'

'

5

(

1

'

3

&

5

&

�

7RNHQ 3DFNHW

6

<

1

&

'

$

7

$

�

3D\ORDG

'DWD

&

5

&

�

�

'DWD 3DFNHW

6

<

1

&

$

&

.

+�6 3NW

3D\ORDG

'DWD

3D\ORDG

'DWD

$

&

.

Figure 3. Example 1, A USB Bulk Transfer

6

<

1

&

,

1

$

'

'

5

(

1

'

3

&

5

&

�

7RNHQ 3DFNHW

6

<

1

&

'

$

7

$

�

�

E\WHV

6HWXS

'DWD

&

5

&

�

�

'DWD 3DFNHW

6

<

1

&

+�6 3NW

6

<

1

&

6

(

7

8

3

$

'

'

5

(

1

'

3

&

5

&

�

7RNHQ 3DFNHW

6

<

1

&

'

$

7

$

�

3D\ORDG

'DWD

&

5

&

�

�

'DWD 3DFNHW

6

<

1

&

6

<

1

&

,

1

$

'

'

5

(

1

'

3

&

5

&

�

7RNHQ 3DFNHW

6

<

1

&

'

$

7

$

�

3D\ORDG

'DWD

&

5

&

�

�

'DWD 3DFNHW

6

<

1

&

+�6 3NW

6(783 6WDJH

'7 6WDJH

67$786 6WDJH

6

<

1

&

'

$

7

$

�

'DWD 3DFNHW

6

<

1

&

+�6 3NW

6

<

1

&

2

8

7

$

'

'

5

(

1

'

3

&

5

&

�

7RNHQ 3DFNHW

&

5

&

�

�

+�6 3NW

6HULDO

,QWHUIDFH

(QJLQH

�6,(�

�

E\WHV

6HWXS

'DWD

3D\ORDG

'DWD

3D\ORDG

'DWD

LQWHOOLJHQFH

$

&

.

$

&

.

$

&

.

$

&

.

$

&

.

Figure 4. Example 2, A USB CONTROL Transfer

Soft USB Controller Design Challenges

3

When first attached to USB, a device answers a series of host
requests through a process called “enumeration”. During
enumeration, the device tells the host about its capabilities
and requirements. The CONTROL transfer shown in Figure 4
is typical of the USB traffic during enumeration.

In a soft controller, the RAM, which holds the program code,
powers on in an unknown state, so the on-chip CPU is not
available to perform the “Intelligence” function described
above. Therefore, the SIE must be enhanced to handle enu-
meration without using the CPU.

EZ-USB Enhanced SIE
The intelligence to fully enumerate as a USB device can be
incorporated into the SIE logic (Figure 5). This “Enhanced
SIE” contains hard-coded descriptor tables to identify it as a
“Generic” device. These descriptors instruct the operating
system to load the correct driver to operate the device. The
generic device contains default USB endpoints and alternate
settings as shown in Table 1.

Having a default set of endpoints simplifies the USB learning
curve, since the developer can program and study USB trans-
fers starting with a fully functional USB device.

AN2131 Memory Map
The default endpoints shown in Table 1 actually represent a
subset of the 31 endpoints available in the AN2131. The full
set of AN2131 endpoints is shown in Figure 6.

6HULDO

,QWHUIDFH

(QJLQH

�6,(�

LQWHOOLJHQFH

(QKDQFHG 6,(

)XOO

'HYLFH

(QXPHUDWLRQ

Figure 5. EZ-USB Enhanced SIE

Table 1. Default Endpoints

Endpoint Type

Alternate Setting

0 1 2

Max Packet Size (bytes)

0 CTL 64 64 64

1 IN INT 0 16 64

2 IN BULK 0 64 64

2 OUT BULK 0 64 64

4 IN BULK 0 64 64

4 OUT BULK 0 64 64

6 IN BULK 0 64 64

6 OUT BULK 0 64 64

8 IN ISO 0 16 256

8 OUT ISO 0 16 256

9 IN ISO 0 16 16

9 OUT ISO 0 16 16

10 IN ISO 0 16 16

10 OUT ISO 0 16 16

(QGSRLQW � ,1

(QGSRLQW � 287

(QGSRLQW � ,1

(QGSRLQW � 287

(QGSRLQW � ,1

(QGSRLQW � 287

(QGSRLQW � ,1

(QGSRLQW � 287

(QGSRLQW � ,1

(QGSRLQW � 287

(QGSRLQW � ,1

(QGSRLQW � 287

(QGSRLQW � ,1

(QGSRLQW � 287

(QGSRLQW � ,1

(QGSRLQW � 287

(=�86% UHJV

���. 5$0

����

E\WHV

%XON

(QGSRLQW

%XIIHUV

����

�%��

�)�)

���� ���� %\WHV

,VRFKURQRXV

),)26

���� %\WHV

,VRFKURQRXV
),)26

62)

86%

(QGSRLQW � FRQWURO

(QGSRLQWV ��� EXON�LQWHUUXSW

(QGSRLQWV ���� LVRFKURQRXV

$OO �� 86% HQGSRLQWV DUH

DYDLODEOH

86%

Figure 6. AN2131 Memory Map

Soft USB Controller Design Challenges

4

Advanced SIE Enumerates and Loads Code
For the soft application, it’s not enough just to enumerate. The
Enhanced SIE must also download code into on-chip RAM for
operation as the final USB device (Figure 7). The Enhanced
SIE accomplishes this by decoding a vendor-specific request
that downloads code into internal RAM. This request is han-
dled over endpoint zero, the default control endpoint. The
eight set-up bytes that define the “Download” USB request
are shown below:

Final USB Device
Once the code is loaded and the CPU is brought out of reset,
the final USB device is operational. Now the CPU is in charge.
The CPU handles the USB device requests that were initially
fielded by the enhanced SIE. Because the CPU has access
to the added SIE intelligence, the firmware is simplified. In
effect, the enhanced SIE becomes a high-level engine for
USB requests (Figure 8).

The ReNumeration™ Process
There’s a hitch. USB allows a device to enumerate only once.
The three steps shown in Figure 9 accomplish the enumera-
tion that configures the soft USB controller as a loader, capa-
ble of downloading the final device personality into internal
RAM. But once the RAM is loaded with the descriptors and
code that define the final device, it’s too late to connect to USB
as the final device.

The device needs to enumerate a second time, or ReNumer-
ate™ (Figure 10). When the final device driver loads, the de-
vice contains all firmware and descriptors, and our soft con-
troller is in business.

Byte Field Value Meaning

0 bmRequest 0x40 Vendor Request, OUT

1 bRequest 0xA0 “Load”

2 wValueL AddrL Starting address

3 wValueH AddrH

4 wIndexL 0x00

5 wIndexH 0x00

6 wLengthL LenL Number of Bytes

7 wLengthH LenH

6HULDO

,QWHUIDFH

(QJLQH

�6,(�

LQWHOOLJHQFH

$QFKRU &KLSV

(QKDQFHG 6,(
)XOO

'HYLFH

(QXPHUDWLRQ

(QKDQFHG

����

&RUH

���9� ���0+]�

��FORFN F\FOH

3URJUDP

DQG

'DWD

5$0

'RZQORDG

	 8SORDG

&RGH

Figure 7. Advanced SIE Enumerates and Loads Code

Figure 8. Final USB Device

LQWHOOLJHQFH

LQWHOOLJHQFH

$QFKRU &KLSV

(QKDQFHG 6,(

86%

)XQFWLRQ

7UDIILF

(QKDQFHG

����

&RUH

���9� ���0+]�

��FORFN F\FOH

3URJUDP

DQG

'DWD

5$0

6HULDO

,QWHUIDFH

(QJLQH

�6,(�

LQWHOOLJHQFH

$QFKRU &KLSV

(QKDQFHG 6,(
,�2

Soft USB Controller Design Challenges

5

The “magic” is simple (Figure 11). A USB hub detects a high-
speed device by the presence of a 1500 Ω pull-up resistor
connected to the D+ line. (The hub has a 15-kΩ pull-down to
keep the line low when nothing is connected.)

Under control of a CPU register bit, the DISCON# pin either
drives to the 3.3 V rail or floats, . This emulates a physical
disconnect and reconnect while maintaining power to the de-
vice. Once reconnected, the USB device enumerates using
the downloaded code and descriptors. The entire enumerate-
ReNumerate™ process happens in less than a second.

+RVW 3&

UHFRJQL]HV GHYLFH

DWWDFKPHQW� VWDUWV

(QXPHUDWLRQ

SURFHVV

+RVW 3& ORDGV

ORDGHU GULYHU�

ZKLFK ORDGV

ILUPZDUH DQG

GHVFULSWRUV LQWR

GHYLFH IURP D

VRIWZDUH ILOH

(=�86% &RUH

SURYLGHV GHYLFH

GHVFULSWRUV WR

LGHQWLI\ WKH ORDGHU

GULYHU�

+RVW 3&

<RXU 3HULSKHUDO 'HYLFH

Figure 9. The Enumeration Process

7KH 0DJLF

+DSSHQV

+RVW 3&

UHFRJQL]HV GHYLFH

DWWDFKPHQW� VWDUWV

(QXPHUDWLRQ

SURFHVV

)LQDO 86% GHYLFH �

(=�86% &38

VHUYLFHV 86% DQG

SURYLGHV GHYLFH

IXQFWLRQDOLW\

+RVW 3& ORDGV

ORDGHU GULYHU�

ZKLFK ORDGV

ILUPZDUH DQG

GHVFULSWRUV LQWR

GHYLFH IURP D

VRIWZDUH ILOH

+RVW 3&

(QXPHUDWHV

DJDLQ � ORDGV

GHYLFH GULYHU

(=�86% &RUH

SURYLGHV GHYLFH

GHVFULSWRUV WR

LGHQWLI\ WKH ORDGHU

GULYHU�

+RVW 3&

<RXU 3HULSKHUDO 'HYLFH

Figure 10. The ReNumeration Process

',6&21�

(=�86%

'�

'�

�9

*1'

7R ���9 5HJXODWRU

�

�

�

�

����

Figure 11. The “Magic” is Simple

Soft USB Controller Design Challenges

6

Get_Descriptor—Conventional Method
Once ReNumerated, the CPU can take advantage of the en-
hanced SIE to simplify the firmware needed to service USB
device requests. Figure 12 illustrates a typical device request
called “Get_Descriptor”.

Most USB peripheral chips handle the “Get_Descriptor” in the
manner shown in Figure 12. The CPU transfers the eight set-
up bytes from an endpoint FIFO to RAM to decode the re-
quest (1,2). Then the CPU fetches the requested data from
internal RAM, packetizes it, and loads it into an endpoint FIFO
for USB transmission (3-6). The CPU must keep track of the
three stages of the CONTROL transfer, usually by maintain-
ing a firmware state machine.

Get_Descriptor—Enhanced SIE Method
Because the enhanced SIE already contains logic to handle
the Get_Descriptor request, the CPU can take advantage of
this added hardware to respond to its own requests.

As in the conventional method, the CPU decodes the request,
although it accesses the eight setup bytes directly in memory,
saving the FIFO-to-memory transfer. Then the CPU simply
loads the address of the requested descriptor (from its inter-
nal descriptor tables) into a control register. The Enhanced
SIE does the rest (Figure 13). Watch Those VID-PID-DIDs.

There are some details to keep straight. In Generic mode, six
bytes of descriptor information “tag” the device to an OS driv-

er. To allow different vendors to customize their own drivers,
a small (16-byte) EEPROM attaches to the EZ-USB chip to
provide custom VID-PID-DID information (see Figure 14).

AN2131 Fast Transfer Modes
It’s important to insure that the CPU keeps up with USB rates
when it transfers data to and from the peripheral (for example
an external FIFO). An AN2131 Fast Transfer mode monitors
transfers between the 8051 accumulator and endpoint FIFOS
and buffers. When enabled, USB data is transferred directly
to the AN2131 data bus, and fast strobes FRD# and FWR#
are generated (Figure 15).

Fast Transfers to an External FIFO
Figure 16 shows an isochronous transfer of 1008 bytes, trans-
ferred from an OUT endpoint to an external FIFO, and then
looped back to an IN endpoint. Thanks to the fast transfer
mode, the time to transfer 1008 bytes in or out of the chip is
shorter than the time for the 1008 bytes to arrive or be sent
over the USB.

Expanding the AN2131Q
The AN2131Q has a non-multiplexed address bus, an 8-bit
data bus, and three 8-bit IO ports (Figure 17). Each IO pin has
an alternate function, for example the Fast Read (FRD#) and
Fast Write (FWR#) strobes shown in Figure 16.

Soft USB Controller Design Challenges

7

&38 FRSLHV),)2 GDWD WR 5$0� GHFRGHV

�*HW 'HVFULSWRU� 5HTXHVW

86% 6HWXS GDWD FRSLHG WR),)2

6

<

1

&

,

1

$

'

'

5

(

1

'

3

&

5

&

�

7RNHQ 3DFNHW

6

<

1

&

'

$

7

$

�

� E\WHV

6HWXS

'DWD

&

5

&

�

�

'DWD 3DFNHW

6

<

1

&

$

&

.

+�6 3NW

6

<

1

&

6

(

7

8

3

$

'

'

5

(

1

'

3

&

5

&

�

7RNHQ 3DFNHW

6

<

1

&

'

$

7

$

�

3D\ORDG

'DWD

&

5

&

�

�

'DWD 3DFNHW

6

<

1

&

'

$

7

$

�

'DWD 3DFNHW

6

<

1

&

$

&

.

6

<

1

&

,

1

$

'

'

5

(

1

'

3

&

5

&

�

7RNHQ 3DFNHW

6

<

1

&

'

$

7

$

�

3D\ORDG

'DWD

&

5

&

�

�

'DWD 3DFNHW

6

<

1

&

$

&

.

+�6 3NW

6

<

1

&

$

&

.

+�6 3NW

6

<

1

&

2

8

7

$

'

'

5

(

1

'

3

&

5

&

�

7RNHQ 3DFNHW

&

5

&

�

�

6(783 6WDJH

'7 6WDJH

67$786 6WDJH

(QGSRLQW

),)2

'HVFULSWRU

'DWD 7DEOH(QGSRLQW

),)2

� �

�
�

�

�

�

�

�

�

�

�

&38 WUDQVIHUV ILUVW SDFNHW RI GDWD IURP

PHPRU\ WR HQGSRLQW),)2�

),)2 'DWD VHQW LQ UHVSRQVH WR 86% ,1

WRNHQ

&38 7UDQVIHUV QH[W SDFNHW RI GDWD IURP

PHPRU\ WR HQGSRLQW),)2�

),)2 'DWD VHQW LQ UHVSRQVH WR 86% ,1

WRNHQ

� 5HSHDW VWHSV ��� DV QHFHVVDU\�

��E\WH

6(783 GDWD

EXIIHU

+�6 3NW

Figure 12. Get_Descriptor—Conventional Method

6

<

1

&

,

1

$

'

'

5

(

1

'

3

&

5

&

�

7RNHQ 3DFNHW

6

<

1

&

'

$

7

$

�

� E\WHV

6HWXS

'DWD

&

5

&

�

�

'DWD 3DFNHW

6

<

1

&

$

&

.

+�6 3NW

6

<

1

&

6

(

7

8

3

$

'

'

5

(

1

'

3

&

5

&

�

7RNHQ 3DFNHW

6

<

1

&

'

$

7

$

�

3D\ORDG

'DWD

&

5

&

�

�

'DWD 3DFNHW

6

<

1

&

'

$

7

$

�

'DWD 3DFNHW

6

<

1

&

$

&

.

6

<

1

&

,

1

$

'

'

5

(

1

'

3

&

5

&

�

7RNHQ 3DFNHW

6

<

1

&

'

$

7

$

�

3D\ORDG

'DWD

&

5

&

�

�

'DWD 3DFNHW

6

<

1

&

$

&

.

+�6 3NW

6

<

1

&

$

&

.

+�6 3NW

6

<

1

&

2

8

7

$

'

'

5

(

1

'

3

&

5

&

�

7RNHQ 3DFNHW

&

5

&

�

�

6(783 6WDJH

'7 6WDJH

67$786 6WDJH

��E\WH

6(783 GDWD

EXIIHU

�

���� VHWV SRLQWHU WR GHVFULSWRU WDEOH LQ 5$0�

(=�86% FRUH GRHV HQWLUH PXOWL�SDFNHW WUDQVIHU�

(=�86% FRUH FRSLHV 6HWXS GDWD GLUHFWO\ WR 5$0�

HOLPLQDWLQJ WKH),)2�WR�5$0 FRS\ VWHS� ����

GHFRGHV WKH �*HW 'HVFULSWRU� UHTXHVW�

�

�

'HVFULSWRU

'DWD 7DEOH

�

+�6 3NW

Figure 13. Get_Descriptor—Enhanced SIE Method

Soft USB Controller Design Challenges

8

(=�86%

86%
3&

/RDGV &RGH /RDGHU 'ULYHU

(=�86%

'HYLFH ,' �','�

3URGXFW ,' �3,'�

9HQGRU ,' �9,'�

6HULDO ((3520

86%

3&

/RDGV 'HYLFH�6SHFLILF

'ULYHU

'HYLFH ,' �','�

3URGXFW ,' �3,'�

9,' ����

�D� �*HQHULF� (QXPHUDWLRQ

�E� &XVWRP 'HYLFH (QXPHUDWLRQ

Figure 14. Watch Those VID-PID-DIDs

$FFXPXODWRU

'375 ,62 287),)2

):5�

P
R
Y
[
D
�#

G
S
WU

'>����@

([WHUQDO),)2

RU $6,&

$FFXPXODWRU

'375 ,62 ,1),)2

'>����@

P
R
Y
[
#
G
S
WU
�D

)5'�

([WHUQDO),)2

RU $6,&

Figure 15. AN2131 Fast Transfer Modes

Soft USB Controller Design Challenges

© Cypress Semiconductor Corporation, 2000. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.

Figure 16. Fast Transfer to an External FIFO

$1����4

3257$ ���

3257& ���

3257% ���

'DWD ���

5'�

:5�

,�&

UHJ
287 3LQ

3,1

2(

$OWHUQDWH)XQFWLRQ

$GGUHVV ����

Figure 17. Expanding the AN2131

