
Bulk Performance Analysis of the Cypress AN2131

Introduction
The Cypress EZ-USB series of USB chips incorporates fea-
tures to speed the transfer of data to and from the Universal
Serial Bus. These include:

1. A fast 8051 core (4 clocks per instruction cycle, 24-MHz
clock).

2. An auto-incrementing data pointer that gives FIFO-like ac-
cess to RAM.

3. A fast transfer mode that transfers outside data directly in
and out of endpoint FIFOS.

4. Endpoint pairing, which allows double-buffered bulk trans-
fers.

This note presents 8051 code that achieves fast transfer of
data from a USB peripheral device to a USB host over a bulk
endpoint. This 8051 code continuously transfers data from
outside the AN2131 to the endpoint 2 IN buffer using the fast
transfer mode.

The Anchor Control Panel (supplied with the EZ-USB Devel-
oper Kit) was used to initiate long bulk IN transfers, and the
bus traffic was recorded and analyzed using a CATC USB bus
analyzer. From this analysis it was possible to study USB bus
utilization, and measure the maximum number of bytes per
frame that the AN2131 can transfer over a bulk endpoint.

USB Data Transfer
The EZ-USB architecture transfers data from internal or ex-
ternal sources using the same instruction, namely ‘movx’.
The AN2131 automatically generates a read strobe (Fast
Read, FRD#) for every ‘movx’ instruction when the fast trans-
fer mode is enabled. The ‘movx’ instruction requires two 8051
cycles, or eight 24-MHz clocks. Thus a byte can be trans-
ferred into or out of an endpoint buffer in 333 nanoseconds.

The AutoPointer

The AN2131 provides bulk endpoint data in 64-byte RAM
buffers. Normally, a transfer into one of these buffers would
require a ‘movx @ dptr,a’ instruction, where the data pointer
‘dptr’ contains the memory address of the bulk endpoint buff-
er. For every ‘movx’ transfer, an ‘inc dptr’ instruction would
also be required to advance the address pointer to the next
byte in the endpoint buffer. To eliminate this overhead, the
AN2131 provides a special hardware pointer called the Auto-
pointer. The 8051 loads a 16-bit address into two registers
called AUTOPTRH and AUTOPTRL, and then reads or writes
a single register called AUTODATA to retrieve data pointed to
by AUTOPTR/H-L. Each read or write of the AUTODATA reg-
ister automatically increments the 16-bit address in
AUTOPTR/H-L. Thus the random-access data in a bulk end-
point buffer can be addressed sequentially through a single
address (like a FIFO), saving the ‘inc dptr’ instruction for every
byte transferred.

Double Buffering (Endpoint Pairing)

When the USB host acknowledges an IN transfer for a partic-
ular endpoint, the AN2131 clears the endpoint’s BUSY bit.
The 8051 is free to load the endpoint buffer only when the
BUSY bit is LOW. The 8051 takes a finite amount of time to
transfer data into the endpoint buffer, during which the USB
host may request another IN transfer. If the 8051 has not fin-
ished loading data into the endpoint buffer when the next IN
token arrives, the AN2131 sends a NAK handshake in re-
sponse to the IN token, indicating that the host should issue
an IN token at a later time. NAK means “I’m busy, try again.”

For best transfer speed, the 8051 should load the next packet
of bulk data while the previous packet is being transferred
over USB. This is accomplished by double buffering, or in
AN2131 terms, “endpoint pairing.” By setting a control bit, the
even-numbered bulk endpoints can be paired with the next
sequential endpoint to implement double buffering. In the
code example, endpoint 2 IN is paired with endpoint 3 IN.
Note that once a pairing bit is set, the endpoint should be
accessed only through the even endpoint—in this example,
endpoint 2 IN. Endpoint 3 should not be accessed in any man-
ner (the endpoint 3 buffer is used by the AN2131 hardware for
the ‘other’ buffer).

Results
The AN2131 transferred seventeen 64-byte packets of bulk
data per frame. This translates to 8.704 Mbits/sec if the bulk
data were to be transferred on a sustained basis, and if no
other USB devices were on the bus. This accounts for a bus
utilization percentage of 73%

Using the programs described in this note, the 8051 core
transferred data from the outside world into the endpoint 2 IN
buffer quickly enough to insure that no NAK handshakes were
generated by the AN2131. Thus the achieved bandwidth
was not determined by the AN2131, but rather by the USB
host. Table 1 shows the results of the CATC USB Bus Ana-
lyzer capture for one frame of USB data. The Anchor Control
Panel was set to transfer 4096 bytes of bulk data over end-
point 2 IN, and the CATC was set to trigger on any IN transfer.
Then a “full” frame (in the middle of the transfer) was captured
for analysis.

Table 1 shows the bus idle times for each of the packets in the
frame. The frame starts with an SOF, followed by 33 idle bit
times. Then each of the seventeen IN transfers consists of an
IN token, a DATA token, 64 bytes of data, and finally an ACK
token. Notice that the total idle time of 1822 USB clocks ac-
counts for 15% of the bus overhead, and the token overhead
accounts for 12% of the bus overhead.

Conclusion
This data was taken to confirm that the AN2131 is speedy
enough to get outside world data into a bulk endpoint buffer
without incurring ‘wait’ states by NAK’ing any of the host’s IN
transfers. The transfer “bandwidth” of 8.7 Megabits per sec-
Cypress Semiconductor Corporation • 3901 North First Street • San Jose • CA 95134 • 408-943-2600
February 1, 2000

Bulk Performance Analysis of the Anchor Chips AN2131
ond should not be interpreted as a typical maximum band-
width for bulk transfers. In practice there will be other USB
devices plugged into the bus. Other bus traffic will subtract
from the available bulk bandwidth.

These tests were run using two Dell computers, a 200-MHz
Dimension XPS Pro with a Symbios OHCI controller, and a
300-MHz Dimension XPS with a UHCI controller. Results
were identical—the PC managed to issue seventeen IN to-
kens per USB frame, and the AN2131 fed the IN endpoints
quickly enough not to incur any NAKs.

The AN2131 achieves its “no-NAK” performance of 8.7
Megabits per second regardless of where the 8051 pro-
gram code is located (internal or external memory), and
regardless of the data source, internal or external to the
AN2131.

Code Details
Two 8051 code examples are shown below. The first example
polls the EP2IN busy bit and transfers 64 bytes into the
IN2BUF buffer whenever the busy bit goes LOW (endpoint not
busy). The 64-byte transfer is accomplished by in-line coding
a loop of sixteen ‘movx’ instructions, and executing the loop
four times. The scope photo below shows the FRD# (Fast
Read) strobe timing for both code examples. Notice that the
code looping after every sixteen byte transfers introduces a
small gap in the FRD# strobe timing.

The second example places the transfer code into an end-
point 2 ISR (Interrupt Service Routine). This was done to add
the overhead of responding to an interrupt, to insure that the
8051 still has plenty of time to load data into the endpoint 2
buffer. The test results were identical, 17 packets per frame
with no NAKs.

Table 1. Bit Times for One Frame of USB Data, Transferring Data from Endpoint 2 IN from the AN2131

IDLE Times (in USB times) Totals

SOF 33 33

Packet # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

IN 6 6 6 6 6 6 6 6 6 8 8 8 6 6 6 6 6 108

DATA0/1 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 135

ACK 62 165 62 62 62 63 62 62 62 62 62 62 62 62 62 64 448 1546

Total IDLE time 1822

Total Frame Time 11984

Payload time = 17 packets * 64 bytes * 8 bits 8704 73%

Total Idle Time 1822 15%

Overhead (tokens) time 1458 12%
2

Bulk Performance Analysis of the Anchor Chips AN2131
One programming subtlety is worth mentioning. When end-
point pairing is used, the 8051 achieves fastest operation by
loading the endpoint 2 IN buffer and arming the EP2-IN trans-
fers (by loading IN2BC) twice before entering the background
program. EP2-IN interrupts occur whenever an IN packet is
received and acknowledged by the host. By pre-loading two
transfers, the ISR does not need to check the endpoint’s busy
bit to determine whether to load one or two packets.

For reference, when endpoint pairing is in effect, the busy bit
acts as follows:

• Initially the busy bit is 0.

• After the first IN2BC load the busy bit is still 0 (one buffer
filled).

• After the second IN2BC load the busy bit goes to 1 (both
buffers filled).

• After an IN transfer successfully completes it goes to 0.
The 1-0 transition causes an EP2 interrupt request.

• If another IN transfer occurs before the 8051 loads another
buffer full of data, a second interrupt request occurs even
though the busy bit remains at 0.

• After the third IN2BC load (in the ISR) it goes to 1 (both
buffers filled).

In the second code example a full USB ISR jump table is
provided at the end of the code, but only the ‘IN2_ISR’ label
is used. This is a convenient template for any 8051 code that
uses AN2131 autovectoring. As interrupt service routines are
written, the corresponding labels in the jump table are com-
mented out.
3

Bulk Performance Analysis of the Anchor Chips AN2131
8051 Code—Polled Example

;--
; bulkfxf.A51 8-21-98 LTH
;
; Program for App Note demonstrating bulk rate performance of AN2131.
;
; Send data over EP2IN as fast as possible, using the fast transfer mode
; and paired endpoint EP2-3IN. This demonstrates how many bulk packets
; the EZ-USB chip can send in a frame.
;
;--
$NOMOD51 ; disable predefined 8051 registers
;$nolist
$INCLUDE (..\REG320.INC)
$include (..\ezregs.inc) ; ez-USB register assignments
;$list
;
NAME bulkfxfr
;

ISEG AT 80H ; stack
stack: ds 20
;

CSEG AT 0 ; absolute Segment at Address 0
LJMP start ; Jump over the interrupt vectors

; --

org 200H
start: mov SP,#STACK-1 ; set stack
;
; Set the stretch value to 0. Don't disturb bits 7-3.
;

mov a,CKCON
anl a,#11111000b ; fastest MOVX cycles--b2b1b0=000
mov CKCON,a

;
; Select the alternate function for PA5--FRD "Fast Read" Strobes
;

mov dptr,#PORTACFG
movx a,@dptr
orl a,#00100000b ; set bit 5 for PA5 alt fn
movx @dptr,a

;
; Enable fast BULK transfers
;

mov dptr,#FASTXFR
mov a,#01000000b ; b7 0 no fast ISO

 ; b6 1 enable fast BULK
 ; b5 0 FRD# active low
 ; b43 00 1 clk FRD# strobe
 ; b2 0 FWR# active low

movx @dptr,a
;
; Select endpoint pairing for EP2IN
;

mov dptr,#USBPAIR
 mov a,#1 ; EP2IN paired
 movx @dptr,a
;
; The AUTOPTR high byte needs to be loaded only once, since when we transfer
; 64 bytes only the low autopointer byte increments.
;

mov dptr,#AUTOPTRH
mov a,#HIGH(IN2BUF)
4

Bulk Performance Analysis of the Anchor Chips AN2131
movx @dptr,a
;

mov dptr,#IN2BC ; arm the first transfer
 mov a,#64
 movx @dptr,a
;--
loop: mov dptr,#IN2CS ; check EP2IN busy bit
loo2: movx a,@dptr

jb acc.1,loo2 ; endpoint is busy
;
service_IN2: mov dptr,#AUTOPTRL ; initialize the autopointer to point to IN2BUF

mov a,#LOW(IN2BUF)
movx @dptr,a
mov dptr,#AUTODATA ; This register will now access IN2BUF as a FIFO
mov r7,#4 ; (4) 16-byte loops

;
; In-line code to transfer 64 bytes using four 16 byte chunks into EP2IN buffer
;
inloop16: movx @dptr,a ; generate FRD# strobe and read from D[7..0]

movx @dptr,a
movx @dptr,a
movx @dptr,a
movx @dptr,a
movx @dptr,a
movx @dptr,a
movx @dptr,a
movx @dptr,a
movx @dptr,a
movx @dptr,a
movx @dptr,a
movx @dptr,a
movx @dptr,a
movx @dptr,a
movx @dptr,a
djnz r7,inloop16

;
mov dptr,#IN2BC
mov a,#64
movx @dptr,a ; arm the EP2IN transfer

;
sjmp loop ; keep going

;
END
5

Bulk Performance Analysis of the Anchor Chips AN2131
8051 Code—Interrupt Driven Example

;--
; ibulkfxf.A51 8-25-98 LTH
; (Interrupt driven version of bulkfxf.a51)
;
; Program for App Note demonstrating bulk rate performance of AN2131.
;
; Send data over EP2IN as fast as possible, using the fast transfer mode
; and paired endpoint EP2-3IN. This demonstrates how many bulk packets
; the EZ-USB chip can send in a frame.
;
; ---
$NOMOD51 ; disable predefined 8051 registers
$nolist
$INCLUDE (..\REG320.INC)
$include (..\ezregs.inc) ; ez-USB register assignments
$list
;
NAME bulkfxfr
;

ISEG AT 80H ; stack
stack: ds 20
;

CSEG AT 0 ; absolute Segment at Address 0
LJMP start ; Jump over the interrupt vectors

; -----------------
; Interrupt Vectors
; -----------------

org 43h ; int2
ljmp USB_Jump_Table ; Autovector will replace byte 45

; ---
org 200H

start: mov SP,#STACK-1 ; set stack
;
; Set the stretch value to 0. Don't disturb bits 7-3.
;

mov a,CKCON
anl a,#11111000b ; fastest MOVX cycles--b2b1b0=000
mov CKCON,a

;
; Select the alternate function for PA5--FRD "Fast Read" Strobes
;

mov dptr,#PORTACFG
movx a,@dptr
orl a,#00100000b ; set bit 5 for PA5 alt fn
movx @dptr,a

;
; Enable fast BULK transfers
;

mov dptr,#FASTXFR
mov a,#01000000b ; b7 0 no fast ISO

 ; b6 1 enable fast BULK
 ; b5 0 FRD# active low
 ; b43 00 1 clk FRD# strobe
 ; b2 0 FWR# active low

movx @dptr,a
;
; Select endpoint pairing for EP2IN
;

mov dptr,#USBPAIR
 mov a,#1 ; EP2IN paired
 movx @dptr,a
;

6

Bulk Performance Analysis of the Anchor Chips AN2131
; The AUTOPTR high byte needs to be loaded only once, since when we transfer
; 64 bytes only the low autopointer byte increments.
;

mov dptr,#AUTOPTRH
mov a,#HIGH(IN2BUF)
movx @dptr,a

;
mov dptr,#IN2BC ; arm the first transfer

 mov a,#64
 movx @dptr,a

movx @dptr,a ; arm the second transfer
;

mov dptr,#USBBAV ; enable autovectors
 mov a,#00000001b ; AVEN bit
 movx @dptr,a ; do it
;

mov dptr,#IN07IEN ; enable EP2IN interrupt
mov a,#00000100b
movx @dptr,a

 setb EX2 ; enable USB interrupts (INT2)
setb EA ; enable 8051 interrupts

;---
loop: sjmp loop ; wait for the interrupt
;---
; Endpoint 2 ISR. Save registers, clear interrupt request flags,
; then transfer 64 bytes from the outside data bus into EP2IN buffer.
;
IN2_ISR: push dps ; save important regs

push dpl
push dph
push dpl1
push dph1
push acc

;
mov a,EXIF ; clear the IRQ2(USB) interrupt
clr acc.4
mov EXIF,a

;
mov dptr,#IN07IRQ

 mov a,#00000100b
 movx @dptr,a ; clear EP2IN IRQ
;

mov dptr,#AUTOPTRL ; initialize the autopointer to point to IN2BUF
mov a,#LOW(IN2BUF)
movx @dptr,a
mov dptr,#AUTODATA ; This register will now access IN2BUF as a FIFO
mov r7,#4 ; (4) 16-byte loops

;
; In-line code to transfer 64 bytes using four 16 byte chunks into EP2IN buffer
;
inloop16: movx @dptr,a ; generate FRD# strobe and read from D[7..0]

movx @dptr,a
movx @dptr,a
movx @dptr,a
movx @dptr,a
movx @dptr,a
movx @dptr,a
movx @dptr,a
movx @dptr,a
movx @dptr,a
movx @dptr,a
movx @dptr,a
movx @dptr,a
7

Bulk Performance Analysis of the Anchor Chips AN2131
movx @dptr,a
movx @dptr,a
movx @dptr,a
djnz r7,inloop16

;
mov dptr,#IN2BC
mov a,#64
movx @dptr,a ; arm the next EP2IN transfer

;
pop acc ; restore registers
pop dph1
pop dpl1
pop dph
pop dpl
pop dps

 reti
;---

CSEG AT 400H; autovector jump table
USB_Jump_Table:

ljmp SUDAV_ISR ; Setup Data Avaialble
db 0 ; make a 4-byte entry
ljmp SOF_ISR ; SOF
db 0
ljmp SUTOK_ISR ; Setup Data Loading
db 0
ljmp SUSP_ISR ; Global Suspend
db 0
ljmp URES_ISR ; USB Reset
db 0
ljmp SPARE_ISR
db 0
ljmp IN0_ISR
db 0
ljmp OUT0_ISR
db 0
ljmp IN1_ISR
db 0
ljmp OUT1_ISR
db 0
ljmp IN2_ISR
db 0
ljmp OUT2_ISR
db 0
ljmp IN3_ISR
db 0
ljmp OUT3_ISR
db 0
ljmp IN4_ISR
db 0
ljmp OUT4_ISR
db 0
ljmp IN5_ISR
db 0
ljmp OUT5_ISR
db 0
ljmp IN6_ISR
db 0
ljmp OUT6_ISR
db 0
ljmp IN7_ISR
db 0
ljmp OUT7_ISR
db 0

;

8

Bulk Performance Analysis of the Anchor Chips AN2131
SUDAV_ISR: reti
SOF_ISR: reti
SUTOK_ISR: reti
SUSP_ISR: reti
URES_ISR: reti
SPARE_ISR: reti
IN0_ISR: reti
OUT0_ISR: reti
IN1_ISR: reti
OUT1_ISR: reti
;IN2_ISR: reti
OUT2_ISR: reti
IN3_ISR: reti
OUT3_ISR: reti
IN4_ISR: reti
OUT4_ISR: reti
IN5_ISR: reti
OUT5_ISR: reti
IN6_ISR: reti
OUT6_ISR: reti
IN7_ISR: reti
OUT7_ISR: reti;--

END
© Cypress Semiconductor Corporation, 2000. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.

