
Programming the EZ-USB I2C Interface

Introduction
The Cypress EZ-USB family contains a general-purpose I2C
interface through which the 8051 accesses standard I2C de-
vices connected to the SCL and SDA pins. The I2C interface
is actually dual-purpose, serving as an ID/boot loader during
enumeration and then as a general 8051 interface once the
8051 is running. This note deals with the 8051 interface, and
presents assembly language code for 8051 byte reads and
writes to the I2C bus. Two versions of the code are included,
the first polled and the second interrupt-driven.

To test the byte read and write subroutines, the code includes
a “loopback” routine that runs on the EZ-USB Development
Board. This board contains two Philips PCF8574 IO expander
chips, which connect to the I2C bus and provide eight general-
purpose input-output bits. Four pushbuttons and two dip-
switches are read using one 8574, and a 7-segment readout
is driven from the other 8574. The program loop continuously
reads one 8574 and writes the other, so the switch states are
instantaneously reflected in the 7-segment readout. A gener-
al-purpose EZ-USB output pin (PORTA bit 0) is also used to
provide useful oscilloscope information for instructional/de-
bug purposes.

Hardware Details
The EZ-USB Development Board uses two Philips PCF8574
IO expander chips to communicate with onboard switches
and lights. The PCF8574 is described in detail in Philips Data

Handbook IC12 (1996), “I2C Peripherals.” These chips are
connected as shown in Table 1.

An I2C peripheral such as the PCF8574 is addressed using
three fields:

1. A slave address (0100 for the 8574).

2. A sub-address which is set by strapping three address pins
HIGH or LOW.

3. A direction bit (bit 0), 0 for write and 1 for read.

The “Command Byte” indicates the byte values used to ad-
dress U12 and U11.

I2C Data Transfers
The 8051 communicates with the I2C bus using two registers,
shown below:

Table 1. EZ-USB Dev Board PCF8574 IO Expander
Functions

PCF8574 Addr Sub Dir Used To Notes

U12 0100 001 0 Drive 7-seg
readout

Dir: b0=0
for write

U11 0100 000 1 Read switches Dir: b0=1
for read

Command Byte

I2CS I2C Control and Status 7FA5

b7 b6 b5 b4 b3 b2 b1 b0

START STOP LASTRD ID1 ID0 BERR ACK DONE

R/W R/W R/W R R R R R

0 0 0 x x 0 0 0

I2DAT I2C Data 7FA6

b7 b6 b5 b4 b3 b2 b1 b0

D7 D6 D5 D4 D3 D2 D1 D0

R/W R/W R/W R/W R/W R/W R/W R/W

x x x x x x x x
Cypress Semiconductor Corporation • 3901 North First Street • San Jose • CA 95134 • 408-943-2600
February 2, 2000

Programming the EZ-USB I2C Interface
The 8051 initiates a transfer by setting the START bit
(I2CS.7), and then writing a command byte (Table 1) to the
I2DAT register. When the I2C controller is ready (next para-
graph) the 8051 then writes or reads data to/from I2DAT. Fi-
nally, the 8051 sets the STOP bit to terminate the transaction.
The I2CS bits have the following functions:

DONE

When the 8051 initiates an I2C transfer, the DONE bit
(I2CS.0) goes LOW, and returns HIGH when the transfer
completes and the EZ-USB I2C controller is ready. A DONE
bit 0-to-1 transition also generates an I2C interrupt request.
The DONE bit is automatically cleared when the 8051 reads
or writes I2DAT. The I2C interrupt request is automatically
cleared when the 8051 reads or writes I2CS or I2DAT.

STOP

The 8051 terminates the I2C transfer by setting STOP=1. This
bit stays HIGH until the I2C controller finishes sending the
STOP condition on the I2C bus, at which time it clears the
STOP bit. Completion of the STOP condition on the I2C bus
has no effect on the DONE and I2C interrupt request bits.

For an I2C read operation, the 8051 must read the last data
byte from I2DAT before the STOP condition completes (within
about 11 microseconds). Therefore the 8051 code should
read the I2DAT register immediately after setting the STOP
bit. If the system uses interrupts, they should be disabled
while the STOP bit is set and I2DAT is read to ensure that the
I2DAT register is read immediately after setting the STOP bit.
This is illustrated in the example code.

During the time that the EZ-USB controller is generating the
STOP condition, it ignores accesses to I2CS and I2DAT. It is
therefore good practice to begin every I2C transfer routine
with a check for STOP=0, indicating that the stop condition
has completed and the I2C controller is “listening.” This allows
immediate back-to-back calls to the I2C read and write sub-
routines.

LastRD

The 8051 sets the LASTRD bit (I2CS.5) before reading the
last byte in a read operation. This instructs the EZ-USB I2C
controller not to generate an ACK for the last transfer. The
lack of an ACK from the I2C master (the EZ-USB I2C control-
ler) signals the I2C peripheral to stop sending.

ACK, BERR

After every transfer (when DONE goes HIGH), two status bits
indicate if the transfer received an ACK (I2CS.1=1) and if an-
other I2C device interfered by driving the bus at the same time
as the EZ-USB controller (Bus Error, BERR=1). For simplicity
the example code does not check these bits after byte trans-
fers.

ID1–ID0

These bits, which indicate the EEPROM type detected by the
EZ-USB I2C boot loader, may be safely ignored for these ex-
amples. For reference, Chapter 4 of the EZ-USB Technical
Reference Manual describes the meaning of these read-only
bits.

Polled Code Description
Refer to Listing A at the end of this note. Because the code
steps are commented in detail, this section gives a code over-
view.

After setting up PORTA.0 as an output at lines 32–34, the
main loop at lines 36–44 pulses PORTA.0 HIGH then LOW,
then calls the ‘read_i2c_byte’ and ‘write_i2c_byte’ subrou-
tines. Figure 1 shows the PORTA.0 trigger pulse and the four
I2C bus transactions that comprise the read and write opera-
tions.

For this simple example the I2C command bytes are hard-
coded to 0100 000 1 for the read (lines 60–62) and 0100 001
0 for the write (lines 105–107). These values correspond to
the values shown in Table 1 for the two PCF8574 IO expander
chips. For generality you would probably want to keep the

Figure 1. Scope Traces for Listing A
2

Programming the EZ-USB I2C Interface
command byte in a variable, as is done in the interrupt exam-
ple in Listing B.

Both the read and write subroutines begin by waiting until the
STOP bit is zero. This is in case the routines are called re-
peatedly or back-to-back. Without this check, the STOP con-
dition for the previous call may not have completed before the
new call, and the I2CS register writes would be ignored.

8051 interrupts are turned off in line 80, just before setting the
STOP bit, and turned back on in line 88, just after reading the
data from the I2DAT register. This ensures that the I2DAT
register is read before the STOP condition completes on the
I2C bus.

Interrupt Code Description
Refer to Listing B at the end of this note. Listing B handles the
I2C transfers using the I2C interrupt (8051 INT3). The obvious
advantage is that the 8051 does not waste time polling the
BUSY bit between I2C operations. Instead, the 8051 does
operations necessary to start an I2C bus cycle, then returns
to the main program. The I2C interrupt goes active when fur-
ther 8051 action is needed (when the BUSY bit makes a 1-to-
0 transition).

Figure 2 shows the four bus transactions that comprise the
read and write operations. PORTA.0 (trace 2) drives LOW
when the 8051 is executing the Interrupt Service Routine
(ISR), and HIGH in the 8051 background program. By eye-
balling trace 2 for percentage of the time LOW (in the ISR) it
is evident that the I2C processing overhead is less than about
ten percent.

The I2C interrupt vector is 8051 INT3, at 0x4B, where a jump
to the I2C ISR is inserted at lines 57–58. These read and write
routines expect to find the I2C address (command byte) in the
variable ‘i2addr’, and the read or write data in the variable
‘i2data’. The program sets a flag called ‘i2busy’ at the begin-
ning of the ISR and clears it when the I2C transfer is complete.
The 8051 background program (a simple loop at lines 72–78)

checks the ‘i2busy’ flag to detect completion of the I2C trans-
fer. Of course your background program will probably have
more useful things to do than just polling this bit.

The read subroutine starts at line 80. The ISR uses a state
variable called ‘i2state’ to figure out what to do next. The read
subroutine starts the I2C transfer by checking for STOP=0
(line 88), setting START=1 (lines 90–92), and writing ‘i2addr’
to the I2DAT register (lines 94–97). Then it initializes the state
variable to i2state=0, enables the I2C interrupt, and returns
(lines 97–102).

The write subroutine does the same steps as above, but ini-
tializes the state variable to i2state=2.

When the 8051 loads the I2DAT register, the I2C controller
sends out the read or write command, shown as the first
(read) and third (write) byte transfers in Figure 2. The little “r”
and “w” letters in Figure 2 indicate the direction bit (bit 0) of
the command byte. After the command byte has been ac-
knowledged, the I2C controller asserts the I2C interrupt and
the ISR (i2c_isr) is entered at line 107.

The ‘scope_lo’ macro at line 114 sets PORTA.0 LOW for os-
cilloscope viewing (Figure 2 trace 2). Then the I2C interrupt
request (INT3) flag is cleared in lines 115–117. The interrupt
request flag from the I2C controller must also be cleared, but
this is done automatically when the 8051 reads or writes ei-
ther the I2CS or I2DAT register.

The ISR then checks the ‘i2state’ variable in lines 119–126,
and depending on its value, takes the actions shown in Table
2. A common exit point, ‘i2exit’ at line 155, returns the scope
signal high, pops the saved registers, and returns from the
interrupt.

The example code enables the I2C interrupt before perform-
ing a byte read or write, and disables the I2C interrupt at com-
pletion. This is probably an unnecessary step in a final sys-
tem, where the I2C interrupt can be left enabled.

Figure 2. Scope Traces for Listing B
3

Programming the EZ-USB I2C Interface
Listing A: Polled Code
1 ; --
2 ; i2cpoll.A51 10-6-98 LTH
3 ; EZ-USB i2c byte read and byte write routines.
4 ; Read and write the PCF8574 i2c expander chips on the EZ-USB development board.
5 ; The 8574 at sub-address 000 is used for input, connected to pushbuttons f1-f4
6 ; and dip switches 1-2. The 8574 at sub-address 001 is used for output, and
7 ; connected to a 7-segment readout. To test the i2c byte read and write
8 ; routines, the program endlessly loops between reading the switches and writing
9 ; their settings to the 7-seg readout.
10 ;
11 ; Port pin PA0 (EZ-USB dev board P4-19) is programmed to pulse HI at the beginning
12 ; of the read-write loop. This allows easy scope triggering when viewing the I2C
13 ; bus lines SCL and SDA.
14 ; --
15 $NOMOD51 ; disable predefined 8051 registers
16 $nolist
17 $INCLUDE (REG320.INC) ; *** for the integrated 8051 core
18 $include (ezregs.inc) ; EZ-USB register assignments
19 $list
20 ;
21 NAME i2cpoll
22 ISEG AT 60H
23 stack: ds 20
24 CSEG AT 0
25 ljmp start
26 ; ---
27 org 200h
28 start: mov SP,#STACK-1 ; set stack
29 ;
30 ; make PA0 an output for scope trigger
31 ;
32 mov dptr,#OEA
33 mov a,#00000001b ; output enable PA0
34 movx @dptr,a
35 ;
36 loop: mov dptr,#OUTA
37 mov a,#00000001b ; pulse the scope
38 movx @dptr,a
39 mov a,#00000000b
40 movx @dptr,a
41 ;
42 call read_i2c_byte
43 call write_i2c_byte
44 sjmp loop
45 ;-------------
46 read_i2c_byte:
47 ;-------------
48 ; 0. Make sure STOP is not in progress
49 ;
50 call stop_check
51 ;
52 ; 1. Set the START bit
53 ;

Table 2. ISR Actions Based on i2state Variable

i2state Action

0 Set LastRD bit, initiate an I2C read cycle, set i2state=1

1 Set the STOP=1, read data from I2DAT, disable I2C interrupt

2 Write data byte to I2C bus, set i2state=3

3 Set STOP=1, disable I2C interrupt
4

Programming the EZ-USB I2C Interface
54 mov dptr,#I2CS
55 mov a,#10000000b ; b7=start bit
56 movx @dptr,a
57 ;
58 ; 2. Write the i2C expander address 0100 000 and indicate read operation (b0=1)
59 ;
60 mov dptr,#I2DAT
61 mov a,#01000001b
62 movx @dptr,a
63 call wait_done
64 ;
65 ; 3. Set LastRD bit
66 mov dptr,#I2CS
67 mov a,#00100000b ; b5=LastRD
68 movx @dptr,a
69 ;
70 ; 4. Read a dummy data byte to initiate the 9 SCL pulses for the read
71 ;
72 mov dptr,#I2DAT
73 movx a,@dptr
74 call wait_done
75 ;
76 ; 5. Set the STOP bit
77 ;
78 mov dptr,#I2Cs
79 mov a,#01000000b
80 clr EA
81 movx @dptr,a
82 ;
83 ; 6. Read the data byte
84 ;
85 mov dptr,#I2DAT
86 movx a,@dptr
87 mov r7,a ; save data in R7
88 setb EA
89 ret
90 ;--------------
91 write_i2c_byte:
92 ;--------------
93 ; 0. Make sure STOP is not in progress
94 ;
95 call stop_check
96 ;
97 ; 1. Set the START bit
98 ;
99 mov dptr,#I2CS
100 mov a,#10000000b ; b7=start bit
101 movx @dptr,a
102 ;
103 ; 2. Write the i2C expander address 0100 001 and indicate write operation (b0=0)
104 ;
105 mov dptr,#I2DAT
106 mov a,#01000010b
107 movx @dptr,a
108 call wait_done
109 ;
110 ; 3. Write the data byte
111 ;
112 mov dptr,#I2DAT
113 mov a,r7
114 movx @dptr,a
115 call wait_done
116 ;
117 ; 4. Set the STOP bit
5

Programming the EZ-USB I2C Interface
118 ;
119 mov dptr,#I2CS
120 mov a,#01000000b
121 movx @dptr,a
122 ret
123 ;----------subroutines----------------------------------
124 ;
125 stop_check: mov dptr,#I2CS
126 stck: movx a,@dptr
127 jb acc.6,stck
128 ret
129 ;
130 wait_done: mov dptr,#I2CS
131 cd1: movx a,@dptr
132 jnb acc.0,cd1
133 ret
134 ;
135 END

Listing B: Interrupt Code
1 ; --
2 ; i2cint.A51 10-6-98 LTH
3 ; EZ-USB i2c byte read and byte write routines.
4 ; This is an interrupt driven version of 'i2cpoll.a51' (Polled I2C).
5 ;
6 ; Read and write the PCF8574 i2c expander chips on the EZ-USB development board.
7 ; The 8574 at sub-address 000 is used for input, connected to pushbuttons f1-f4
8 ; and dip switches 1-2. The 8574 at sub-address 001 is used for output, and
9 ; connected to a 7-segment readout. To test the i2c byte read and write
10 ; routines, the program endlessly loops between reading the switches and writing
11 ; their settings to the 7-seg readout.
12 ;
13 ; Port pin PA0 (EZ-USB dev board P4-19) is programmed to output HI during background
14 ; code execution, and LO while in the interrupt service routine. This allows easy
15 ; scope triggering as well as measuring how much overhead is consumed by the ISR.
16 ; --
17 $NOMOD51 ; disable predefined 8051 registers
18 $nolist
19 $INCLUDE (REG320.INC) ; *** for the integrated 8051 core
20 $include (ezregs.inc) ; EZ-USB register assignments
21 $list
22
23 NAME i2cint
24
25 I2READ equ 0
26 I2WRITE equ 2 ; constants used to init. i2c state machine
27 READBUTS equ 01000001b ; PCF8574 unit 0 connected to switches
28 WRITE7SEG equ 01000010b ; PCF8574 unit 1 connected to 7-seg readout
29 ;
30 ISEG AT 60H ; stack
31 stack: ds 20
32 ;
33 DSEG AT 20H ; bit mapped regs
34 flags: ds 1
35 i2busy equ flags.0
36 ;
37 i2addr: ds 1
38 i2data: ds 1
39 i2state: ds 1
40 ;---------------macros---------------
41 scope_hi MACRO
42 mov dptr,#OUTA
43 mov a,#1
44 movx @dptr,a
6

Programming the EZ-USB I2C Interface
45 ENDM
46 ;
47 scope_lo MACRO
48 mov dptr,#OUTA
49 mov a,#0
50 movx @dptr,a
51 ENDM
52 ;---------end of macros---------------
53 ;
54 CSEG AT 0
55 ljmp start
56 ;
57 org 4BH ; int 3 (i2c) vector
58 ljmp i2c_ISR
59 ; ---
60 org 200h
61 ; ---
62 start: mov SP,#STACK-1 ; set stack
63 ;
64 ; make PA0 an output for scope trigger
65 ;
66 mov dptr,#OEA
67 mov a,#00000001b ; output enable PA0
68 movx @dptr,a
69 scope_hi
70 setb EA ; interrupts ON
71 ;
72 loop: mov i2addr,#READBUTS
73 call read_i2c_byte
74 rd_wait: jb i2busy,rd_wait
75 mov i2addr,#WRITE7SEG
76 call write_i2c_byte
77 wr_wait: jb i2busy,wr_wait
78 sjmp loop
79 ;
80 read_i2c_byte:
81 ;
82 ; This subroutines kicks off an i2c read sequence. Waits for STOP complete,
83 ; sets START bit, writes i2c address, enables the i2c interrupt. The ISR state
84 ; machine, which is invoked each time the I2CS DONE bit goes true, completes the
85 ; transfer.
86 ;
87 setb i2busy ; show not done yet
88 call stop_check
89 ;
90 mov dptr,#I2CS ; set the START bit
91 mov a,#10000000b ; b7=start bit
92 movx @dptr,a
93 ;
94 mov dptr,#I2DAT ; write i2c addr and b0=1 for read
95 mov a,i2addr ; Fmt: uuuusssd where u=unit, s=subaddress, d=direc
96 movx @dptr,a ; start sending SCL clocks
97 mov i2state,#I2READ ; initialize the state
98 ;
99 mov a,EIE ; enable INT3
100 setb acc.1 ; EIE.1 is EX3 interrupt enable
101 mov EIE,a
102 ret ; INT3 ISR state machine takes over from here...
103 ;
104 ; Read or write an i2c byte using interrupts.
105 ; Implements a state machine, where states 0-1 are for reads and 2-3 for writes.
106 ;
107 i2c_isr: push dps
108 push dpl
7

Programming the EZ-USB I2C Interface
109 push dph
110 push dpl1
111 push dph1
112 push acc
113 ;
114 scope_lo ; show we're in the ISR
115 mov a,EXIF ; clear the INT3 request
116 clr acc.5
117 mov EXIF,a
118 ;
119 mov a,i2state
120 cjne a,#0,cs1
121 sjmp state0
122 cs1: cjne a,#1,cs2
123 sjmp state1
124 cs2: cjne a,#2,cs3
125 sjmp state2
126 cs3: sjmp state3
127 ;
128 ; State 0: Set LastRD bit, dummy read to initiate 9 SCL clocks
129 ;
130 state0: mov dptr,#I2CS ; R/W to I2CS clears the i2c IRQ bit
131 mov a,#00100000b ; b5=LastRD
132 movx @dptr,a
133 ;
134 mov dptr,#I2DAT ; dummy read to initiate 9 SCL clocks
135 movx a,@dptr ; read it
136 mov i2state,#1 ; next state is 1
137 sjmp i2exit
138 ;
139 ; State 1: Set the STOP bit, read the data from i2DAT
140 ;
141 state1: mov dptr,#I2CS ; This clears the i2c IRQ bit
142 mov a,#01000000b ; b6=STOP bit
143 clr EA ; in case we're operating at low priority
144 movx @dptr,a ; write the stop bit
145 ;
146 mov dptr,#I2DAT ; read the data byte
147 movx a,@dptr
148 mov i2data,a ; save the byte in i2dat
149 setb EA ; interrupts back on
150 clr i2busy ; indicate completion
151 mov a,EIE ; disable INT3
152 clr acc.1 ; EIE.1 is EX3 interrupt enable
153 mov EIE,a
154 ;
155 i2exit: scope_hi
156 pop acc
157 pop dph1
158 pop dpl1
159 pop dph
160 pop dpl
161 pop dps
162 reti
163 ;
164 write_i2c_byte:
165 setb i2busy ; show not done yet
166 call stop_check ; wait for prior operation to complete
167 ;
168 mov dptr,#I2CS ; set the START bit
169 mov a,#10000000b ; b7=start bit
170 movx @dptr,a
171 ;
172 mov dptr,#I2DAT ; write i2c addr
8

Programming the EZ-USB I2C Interface
173 mov a,i2addr
174 movx @dptr,a ; start sending SCL clocks
175 mov i2state,#I2WRITE; initialize the state
176 ;
177 mov a,EIE ; enable INT3
178 setb acc.1 ; EIE.1 is EX3 interrupt enable
179 mov EIE,a
180 ret ; INT3 ISR state machine takes over from here...
181 ;
182 state2: mov dptr,#I2DAT
183 mov a,i2data
184 movx @dptr,a ; this clears the i2c IRQ
185 mov i2state,#3 ; next state is 3
186 sjmp i2exit
187 ;
188 state3: mov dptr,#I2CS ; set the STOP bit
189 mov a,#01000000b
190 movx @dptr,a
191 clr i2busy ; indicate completion
192 mov a,EIE ; disable INT3
193 clr acc.1 ; EIE.1 is EX3 interrupt enable
194 mov EIE,a
195 sjmp i2exit
196 ;---
197 stop_check: mov dptr,#I2CS
198 stck: movx a,@dptr
199 jb acc.6,stck
200 ret
201 ;
202 wait_done: mov dptr,#I2CS
203 cd1: movx a,@dptr
204 jnb acc.0,cd1
205 ret
206 ;
207 END
© Cypress Semiconductor Corporation, 2000. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.

