
fax id: 3456 

Cypress Semiconductor Corporation • 3901 North First Street • San Jose • CA 95134 • 408-943-2600
April 13, 1998

Designing a Low-Cost USB Interface for an Uninterruptable 
Power Supply with the Cypress Semiconductor CY7C63001 

USB Controller

Introduction
The Universal Serial Bus (USB) is an industrial standard se-
rial interface between a computer and peripherals such as a
mouse, joystick, keyboard, UPS, etc. This application note
describes how a cost-effective USB Uninterruptable Power
Supply Interface (UPS) can be built using the Cypress Semi-
conductor single-chip CY7C63001 USB controller. The docu-
ment starts with the basic operations of an uninterruptable
power supply followed by an introduction to the CY7C63001
USB controller. A schematic of the CY7C63001 USB control-
ler to the RS-232 of the UPS connection can be found in the
Hardware Implementation Section.

The software section of this application note describes the
architecture of the firmware required to implement the USB
UPS functions. Several sample code segments are included
to assist in the explanation. Please contact your local Cypress
sales office for a copy of the firmware.

This application note assumes that the reader is familiar with
the CY7C63001 USB controller and the Universal Serial Bus.
The CY7C63001 data sheet is available from the Cypress
web site at www.cypress.com. USB documentation can be
found at the USB Implementers Forum web site at
www.usb.org.

USB UPS Basics
USB has been gaining popularity due to it’s simple connec-
tion, plug and play feature, and hot insertion capability. This
application note shows how an RS-232 UPS (low speed serial
device) could be changed into a USB UPS using the
CY7C63001 controller as shown in Figure 1. 

In this design the UPS configuration and communication to
the PC is all done through the USB interface. The RS-232
interface has a 2400 baud rate. 

USB provides the plug-and-play feature that is not supported
in RS-232 and PS/2 interfaces. The USB interface uses a
four-pin connector with positive retention. A 28 AWG twisted
pair is used for differential signaling and two 20 to 30 AWG
wires are used to supply power and ground. 

A simple UPS topology consists of a Battery system, a Power
Converter system, a main AC input flow and an AC output
flow. These are described in details in the “Report Descriptor”
part of the “Firmware Implementation” section. For more de-
tails refer to the “Universal Serial Bus Device Class Definition
and Usages Tables for Power Devices v. 0.9”

Introduction to CY7C63001
The CY7C63001 is a high performance 8-bit RISC microcon-
troller with an integrated USB Serial Interface Engine (SIE).
The architecture implements 34 commands that are opti-
mized for USB applications. The CY7C63001 has built-in
clock oscillator and timers as well as programmable current
drivers and pull-up resistors at each I/O line. High perfor-
mance, low-cost human-interface type computer peripherals
can be implemented with a minimum of external components
and firmware effort.

Clock Circuit

The CY7C63001 has a built-in clock oscillator and PLL-based
frequency doubler. This circuit allows a cost effective 6 MHz
ceramic resonator to be used externally while the on-chip
RISC core runs at 12 MHz.

Figure 1. UPS to PC Connection

PC

host

RS-232ASIC /
USB Bus

CUPS

7

6

0

1

micro-
controller

Y

C

3

0



Designing a Low-Cost USB UPS Interface

2

USB Serial Interface Engine (SIE) 

The operation of the SIE is totally transparent to the user. In
the receive mode, USB packet decode and data transfer to
the endpoint FIFO are automatically done by the SIE. The SIE
then generates an interrupt request to invoke the service rou-
tine after a packet is unpacked.

In the transmit mode, data transfer from the endpoint and the
assembly of the USB packet are handled automatically by the
SIE.

General Purpose I/O

The CY7C63001 has 12 general purpose I/O lines divided
into 2 ports: Port 0 and Port 1. One such I/O circuit is shown
in Figure 2. The output state can be programmed according
to Table 1 below. Writing a “0” to the Data Register will drive
the output LOW and allow it to sink current.

Instead of supporting a fixed output drive, the CY7C63001
allows the user to select an output current level for each I/O
line. The sink current of each output is controlled by a dedi-
cated 8-bit Isink Register. The lower 4 bits of this register
contains a code selecting one of sixteen sink current levels.
The upper 4 bits are reserved and must be written as zeros.
The output sink current levels of the two I/O ports are differ-
ent. For Port 0 outputs, the lowest drive strength (0000) is
about 0.2 mA and the highest drive strength (1111) is about
1.0 mA. These levels are insufficient to drive LEDs.

Port 1 outputs are specially designed to drive high-current
applications such as LEDs. Each Port 1 output is much stron-
ger than their Port 0 counterparts at the same drive level set-
ting. In other words, the lowest and highest drive for Port 1
lines are 3.2 mA and 16 mA respectively.

Each General Purpose I/O (GPIO) is capable of generating
an interrupt to the RISC core. Interrupt polarity is selectable
on a per bit basis using the Port Pull-Up register. Setting a
Port Pull-Up register bit to “1” will select a rising edge trigger
for the corresponding GPIO line. Conversely, setting a Port
Pull-Up register bit to “0” will select a falling edge trigger. The
interrupt triggered by a GPIO line is individually enabled by a
dedicated bit in the Port Interrupt Enable registers. All GPIO
interrupts are further masked by the Global GPIO Interrupt
Enable bit in the Global Interrupt Enable register

The Port Pull-Up registers are located at I/O address 0x08
and 0x09 for Port 0 and Port 1 respectively. The Data registers
are located at I/O address 0x00 and 0x01 for Port 0 and Port
1 respectively. The Port 0 and Port 1 Interrupt Enable regis-
ters are at addresses 0x04 and 0x05 respectively.

Hardware Implementation
The UPS USB interface is implemented as shown in Figure
6. A 7.5-KΩ resistor is used to pull up the D– line to 5V. This
signals to the host that this is a low speed device upon plug-in.
The interface to the RS-232 is done through two GPIO pins
where bit banging is used. 

RS-232C Electrical Characteristics

This design implements the following electrical characteris-
tics:

• ±10 VDC Signaling Rails

• Three-wire Interface

Transmit Data

Receive Data

Signal Ground

• No Hardware Handshake

The use of an RS-232 level translator, that requires a single
+5 VDC supply, provides a simple and effective hardware in-
terface to the serial bus. This device uses voltage doubling
and inversion techniques to provide the ±10 VDC signaling
rails required by this design. The schematic for this device
connection is shown in Figure 7.

Table 1. Programmable Output State 

Port Data bit Port Pull-up bit Output State

0 X Sink current “0”

1 0 Pull-up resistor “1”

1 1 High-Z

Figure 2. One General Purpose I/O Line

GPIO
Pin

VCC

Isink

DAC
Port Isink
Register

Port Data
Register

Port Pull-Up
Register

16 KΩ
Schmitt
Trigger

Data Bus



Designing a Low-Cost USB UPS Interface

3

A simple three wire interface minimizes the hardware require-
ments and reduces the complexity of the firmware design.

RS-232C Serial Data Transfer Protocol

This design supports the following features:

• 2400 Baud

• 10-Bit Frame

1 Start, 8 Data, 1 Stop

• No Parity

• Half Duplex Mode

By limiting the supported protocol to a single set of features,
implementation of the design is simplified and data stability is
ensured.

At the 2400-baud data rate, the design produces a 10-bit
frame in 4.17 milliseconds thus transferring an ASCII charac-
ter approximately every 5 milliseconds.

The data is “framed” by a beginning active LOW start bit and
an ending active HIGH stop bit.

The use of 8 data bits provides access to the full range of the
256 character Extended ASCII set.

The data is transmitted onto the serial data bus starting with
the least significant bit and progressing to the most significant
bit.

Currently the design does not support parity checking.

The half duplex mode of communications supports exclusive
transmit and receive operations only. Therefore data flow di-
rection on the bus must be predetermined.

An ASCII Carriage_Return/Line_Feed character pair is ap-
pended to the end of each character string to signal the end
of transmission.

Figure 3 illustrates the timing relationships of the elements
that compose a serial data frame.

Serial Interface Transmit Protocol

The transmit routine uses the 128-µs interrupt, generated by
the built-in timer, to generate the outgoing serial data stream.

During the transmit operation a character string is placed in
the transmit buffer and the ASCII Carriage_Return/
Line_Feed character pair is appended to end.

The first character is copied into the transmit register and the
transmit routine is called.

A low start bit is generated on the first occurrence of the
128-µs interrupt and the data is then shifted onto the bus, LSB
first, based on a count of the number of interrupts that have
occurred. After the MSB of the data has been transmitted, an
active HIGH stop bit is driven onto the bus to complete the
frame. The bus is continually driven HIGH until the start bit of
the next frame is transmitted.

Each character is then copied in turn to the transmit register
and the transmit routine is called repeatedly until the transmit
buffer is empty.

Upon completion of the transmit operation, the main routine
enables the GPIO interrupts and waits for a response in the
receive data line.

Figure 4 illustrates the use of the 128-µs interrupt to establish
a serial transmit data frame. Timing is based on the hexadec-
imal count of the number of interrupts from the start of the
transmit frame.

Serial Interface Receive Protocol

The receive routine uses the GPIO interrupt and the 128-µs
interrupt, generated by the built-in timer, to process the in-
coming serial data stream.

When the receive routine is called, GPIO interrupts are en-
abled, allowing a received start bit to signal the beginning of
the first data frame.

Figure 3. RS-232C Serial Data Frame

Figure 4. Transmit Serial Data Frame

Start StopBit 1Bit 0 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7

0 µs 417 µs 834 µs 1251 µs 1668 µs 2085 µs 2502 µs 2919 µs 3336 µs 3753 µs 4170 µs

Start StopBit 1Bit 0 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7

00h

384 µs 896 µs 1280 µs 1664 µs 2048 µs 2560 µs 2944 µs 3328 µs 3712 µs 4224 µs0 µs

03h 07h 0Ah 0Dh 10h 14h 17h 1Ah 1Dh 20h



Designing a Low-Cost USB UPS Interface

4

The start bit is synchronized to the subsequent 128-µs inter-
rupt and checked for validity. The following data bits are sam-
pled, based on the count of 128-µs interrupts, at the near
midpoint of the frame and shifted into the receive register. The
stop bit is sampled and checked for validity.

If a valid frame (start bit = ‘0’, stop bit = ‘1’) is detected, the
receive register contents are copied into the receive buffer. If
an invalid frame is detected a flag is set indicating a framing
error and the receive operation continues.

The received data is compared to the value of the ASCII
Line_Feed character (0Ah). If the Line_Feed character is de-
tected, the receive operation ends and the firmware returns

to the calling routine. If the Line_Feed character is not detect-
ed the receive operation continues to accept characters and
place them in the receive buffer.

The ASCII Carriage_Return character (0Dh) is retained, as a
string terminator, in the receive buffer for further data pro-
cessing.

If an invalid frame was detected, as indicated by the framing
flag, the receive buffer is reinitialized and the transmit/receive
cycle is repeated.

Figure 5 illustrates the use of the 128-µs interrupt to establish
a serial receive data frame.

Figure 5. Receive Serial Data Frame

Start StopBit 1Bit 0 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7

0 µs 128 µs 640 µs 1152 µs 1536 µs 1920 µs 2304 µs 2816 µs 3200 µs 3584 µs 3968 µs

00h 01h 05h 09h 0Ch 0Fh 12h 16h 19h 1Ch 1Fh



Designing a Low-Cost USB UPS Interface

5

Figure 6. Hardware Implementation



Designing a Low-Cost USB UPS Interface

6

Figure 7. Electrical Schematic Diagram—Serial Interface Modification

VCC

+5V to +10V
Voltage Doubler

V+
C1–

C1+

+10V to –10V
Voltage Inverter

C2+

C2–
V-

T1

T2

R1

R2

GND

400 KΩ

400 KΩ

5 KΩ

5 KΩ

5

4

1

3

11

10

12

9 8

13

7

14

15

16

6

2

RxD

TxD

Signal
Gnd

+5V

0.1-µF 6.3V

0.1-µF 6.3V

0.1-µF 6.3V

0.1-µF 6.3V

DB-9

ICL232CPE

P0.0 / TxD

P0.7 / RxD

To

RS-232C

Bus

From
M8 µController

2

3

5

JP-2 Pin 1

JP-2 Pin 8

N/C

N/C
N/C

N/C

N/CN/C

N/C



Designing a Low-Cost USB UPS Interface

7

Firmware Implementation
USB Interface

All USB Human Interface Device (HID) class applications fol-
low the same USB start-up procedure. The procedure is as
follows (see Figure 8):

Device Plug-in

When a USB device is first connected to the bus, it is powered
but remains non-functional waiting for a bus reset. The pull-up
resistor on D– notifies the hub that a low-speed (1.5 Mbps)
device has just been connected.

Bus Reset

The host recognizes the presence of a new USB device and
resets it (see Figure 9).

Enumeration

The host sends a SETUP packet followed by IN packets to
read the device description from default address 0. When the
description is received, the host assigns a new USB address
to the device. The device begins responding to communica-
tion with the newly assigned address, while the host contin-
ues to ask for information about the device description, con-
figuration description and HID report description. Using the
information returned from the device, the host now knows the
number of data endpoints supported by the device. At this
point, the process of enumeration is completed. See
Figures 10, 11, and 12

Figure 8. USB Start-Up Procedure

Device Plug-in

Bus Reset

Enumeration

Data Acquisition/
Transfer

Figure 9. Reset Interrupt Service Routine

Figure 10. Endpoint 0 ISR

Start

• Set up stack pointer

• Enable all interrupts being used

Main Loop

• Responds to 
SETUP packet 
according to the 
parsing structure

N

Y

End Point 0

received a
SETUP packet

return



Designing a Low-Cost USB UPS Interface

8

Data Acquisition/Transfer

Data Transfer is done through several reports (five in our
case). When the host asks for one of these reports the device
translates the request into a set of UPS commands and sends
them across the RS-232 bus to the UPS. After the UPS re-
plies to all the commands the controller converts the re-
sponse to the required format. When the host issues IN pack-
ets to retrieve data from the device, the device returns the
converted and formatted data to the host. The host asks for
the reports through the get report request. Each report has a
unique ID. The subroutine that implements the get report re-
quest is shown in Figure 15. 

The set report request ID 3 is used to test the UPS. When this
request is received from the host the microcontroller sends a
test command to the UPS over the RS-232 interface. This

command starts the testing process on the UPS. A get report
request ID 3 should then be issued by the host to be able to
read the results of the tests performed. The set report sub-
routine is implemented as shown in Figure 16.

Therefore, all data transfer between the host and the UPS
through the CY7C63001 microcontroller is done through end-
point 0 using the different reports. Since this is a low-speed
device, the maximum transfer rate is 8 bytes per ms.

The file Serial.asm contains the subroutines necessary to
communicate with the peripheral. The transmit, receive, delay
and various support subroutines are located here.

Further clarification of code functionality is included as com-
ments throughout the assembly source code.

Figure 11. USB Standard Request Parsing Structure

host to dev 
dev recip 

0x00

host to dev 
inter recip 

0x01

host to dev 
endp recip 

0x02

dev to host 
dev recip 

0x80

dev to host 
inter recip 

0x81

dev to host 
endp recip 

0x82

get status 
0x00

clr feature 
0x01

set feature 
0x3

set addr 
0x05

get desc 
0x06

set desc 
0x07

get config 
0x08

set config 
0x09

get inter 
0x0A

set inter 
0x0B

synch 
0x0C

bmrequest type

brequest

Figure 12. USB HID Class Request Parsing Structure

host to dev 
inter recip 

0x21

dev to host 
inter recip 

0xA1

get_protocol
 0x03

bmrequest type

brequest

get_idle 
0x02

get_reportl 
0x01

set_protocol 
0x0B

set_idle 
0x0A

set_reportl 
0x09



Designing a Low-Cost USB UPS Interface

9

Firmware Flow for Transmit Routine

Figure 13 illustrates the flow of the assembly code for the
transmit routine of the Serial Interface design.

The routine is initially called to transmit the first character in
the receive buffer. It will continue to loop, sending further char-
acters, until it has reached the end of the buffer.

Note that the buffer terminates with an ASCII carriage_return/
line_feed pair. This indicates the end of data transmission to
the receiving device.

Figure 13. Firmware Flow Diagram - Transmit

Start Bit = ‘0’Start
Bit

Data
Bit 0

Data
Bit 1

Data
Bit 2

Data
Bit 3

Stop
Bit

Data
Bit 7

Data
Bit 6

Data
Bit 5

Data
Bit 4

128-µs Count = 03h

128-µs Count = 07h

128-µs Count = 0Ah

128-µs Count = 0Dh

128-µs Count = 10h

128-µs Count = 20h

128-µs Count = 1Dh

128-µs Count = 1Ah

128-µs Count = 17h

128-µs Count = 14h

Stop Bit = ‘1’

MAINTransmit

128-µs Count = 00h



Designing a Low-Cost USB UPS Interface

10

Firmware Flow for Receive Routine

Figure 14 illustrates the flow of the assembly code for the
transmit routine of the Serial Interface design.

The routine is initially entered after transmitting a command
on the RS-232 bus. The responding device begins transmit-
ting the requested data as an ASCII character string. The
receive routine continues to loop, accepting characters, until
it detects an ASCII carriage_return/line_feed pair. All re-

ceived characters are saved in a buffer except for the line-feed
character which is stripped. If a framing error occurs, the re-
ceive buffer will be flushed and the previous command will be
reissued to the responding device.

The resulting receive buffer contains the ASCII character
string terminated with the carriage_return character. This lim-
its the return character string to 15 characters in length.

Figure 14. Firmware Flow Diagram - Receive

GPIO Interrupt

MAIN

Start Bit = ‘0’

Start Bit = ‘1’

Receive

Start
Bit

Data
Bit 0

Data
Bit 1

Data
Bit 2

Data
Bit 3

Stop
Bit

Data
Bit 7

Data
Bit 6

Data
Bit 5

Data
Bit 4

128-µs Count = 01h

128-µs Count = 05h

128-µs Count = 09h

128-µs Count = 0Ch

128-µs Count = 0Fh

128-µs Count = 1Fh

128-µs Count = 1Ch

128-µs Count = 19h

128-µs Count = 16h

128-µs Count = 12h

Stop Bit = ‘1’ Stop Bit = ‘0’

Receive
Buffer

Save
Data



Designing a Low-Cost USB UPS Interface

11

Care should be taken to avoid accepting more than 15 char-
acters as the memory area succeeding the receive buffer is
used by the microcontroller’s data stack. Should the periph-
eral send more than 15 characters in a string, or if a large data
stack is required, the data memory space should be adjusted
to increase the area between the receive buffer and the data
stack pointer.

Note that the carriage-return character is retained as a delim-
iter for further processing of the receive buffer data.

USB Descriptors

As stated earlier, the USB descriptors hold information about
the device. There are several types of descriptors, which will
be discussed in detail below. All descriptors have certain
characteristics in common. Byte 0 is always the descriptor
length in bytes and Byte 1 is always the descriptor type. Dis-
cussion of these two bytes will be omitted from the following
descriptions. The rest of the descriptor structure is dependent
on the descriptor type. An example of each descriptor will be
given. Descriptor types are device, configuration, interface,
endpoint, string, report, and several different class descrip-
tors.

Device Descriptor

This is the first descriptor the host requests from the device.
It contains important information about the device. The size
of this descriptor is 18 bytes. A list follows:

• USB Specification release number in binary-coded deci-
mal (BCD) (2 bytes)

• Device class (1 byte)

• Device subclass (1 byte)

• Device protocol (1 byte)

• Max packet size for Endpoint 0 (1 byte)

• Vendor ID (2 bytes)

• Product ID (2 bytes)

• Device release number in BCD (2 bytes)

• Index of string describing Manufacturer (Optional) (1 byte)

• Index of string describing Product (Optional) (1 byte)

• Index of string containing serial number (Optional) (1 byte)

• Number of configurations for the device (1 byte)

Example of a device descriptor

Descriptor Length (18 bytes)
Descriptor Type (Device)
Complies to USB Spec Release (1.00)
Class Code (insert code)
Subclass Code (0)
Protocol (No specific protocol)
Max Packet Size for endpt 0 (8 bytes)
Vendor ID (Cypress)
Product ID (USB UPS)
Device Release Number (1.03)
String Describing Vendor (1)
String Describing Product (2)
String for Serial Number (3)
Possible Configurations (1)

Configuration Descriptor

The configuration descriptor is 9 bytes in length and gives the
configuration information for the device. It is possible to have

more than one configuration for each device. When the host
requests a configuration descriptor, it will continue to read
these descriptors until all configurations have been received.
A list of the structure follows:

• Total length of the data returned for this configuration (2 
bytes)

• Number of interfaces for this configuration (1 byte)

• Value used to address this configuration (1 byte)

• Index of string describing this configuration (Optional) (1 
byte)

• Attributes bitmap describing configuration characteristics 
(1 byte)

• Maximum power the device will consume from the bus (1 
byte)

Example of configuration descriptor

Descriptor Length (9 bytes)
Descriptor Type (Configuration)
Total Data Length (34 bytes)
Interfaces Supported (1)
Configuration Value (1)
String Describing this Config (None)
Config Attributes (Self powered)
Max Bus Power Consumption (100mA)

Interface Descriptor

The interface descriptor is 9 bytes long and describes the
interface of each device. It is possible to have more than one
interface for each device. This descriptor is set up as follows:

• Number of this interface (1 byte)

• Value used to select alternate setting for this interface (1 
byte)

• Number of endpoints used by this interface. If this number 
is zero, only endpoint 0 is used by this interface (1 byte)

• Class code (1 byte)

• Subclass code (1 byte)

• Protocol code (1 byte)

• Index of string describing this interface (1 byte)

Example of interface descriptor

Descriptor Length (9 bytes)
Descriptor Type (Interface)
Interface Number (0)
Alternate Setting (0)
Number of Endpoints (1)
Class Code (insert code)
Subclass Code (0)
Protocol (No specific protocol)
String Describing Interface (None)

Endpoint Descriptor

The endpoint descriptor describes each endpoint, including
the attributes and the address of each endpoint. It is possible
to have more than one endpoint for each interface. This de-
scriptor is 7 bytes long and is set up as follows:

• Endpoint address (1 byte)

• Endpoint attributes. Describes transfer type (1 byte)



Designing a Low-Cost USB UPS Interface

12

• Maximum packet size this endpoint is capable of transfer-
ring (2 bytes)

• Time interval at which this endpoint will be polled for data 
(1 byte)

Example of endpoint descriptor

Descriptor Length (7 bytes)
Descriptor Type (Endpoint)
Endpoint Address (IN, Endpoint 1)
Attributes (Interrupt)
Maximum Packet Size (8 bytes)
Polling Interval (10 ms)

HID (Class) Descriptor

The class descriptor tells the host about the class of the de-
vice. In this case, the device falls in the human interface de-
vice (HID) class. This descriptor is 9 bytes in length and is set
up as follows:

• Class release number in BCD (2 bytes)

• Localized country code (1 byte)

• Number of HID class descriptor to follow (1 byte)

• Report descriptor type (1 byte)

• Total length of report descriptor in bytes (2 bytes)

Example of HID class descriptor

Descriptor Length (9 bytes)
Descriptor Type (HID Class)
HID Class Release Number (1.00)
Localized Country Code (USA)
Number of Descriptors (1)
Report Descriptor Type (HID)
Report Descriptor Length (63 bytes)

Report Descriptor

This is the most complicated descriptor in USB. There is no
set structure. It is more like a computer language that de-
scribes the format of the device’s data in detail. This descrip-
tor is used to define the structure of the data returned to the
host as well as to tell the host what to do with that data. 

A report descriptor must contain the following items: Input (or
Output or Feature), Usage, Usage Page, Logical Minimum,
Logical Maximum, Report Size, and Report Count. These are
all necessary to describe the device’s data. 

Input items are used to tell the host what type of data will be
returned as input to the host for interpretation. These items
describe attributes such as data vs. constant, variable vs. ar-
ray, absolute vs. relative, etc.

Usages are the part of the descriptor that defines what should
be done with the data that is returned to the host. There is
also another kind of Usage tag called a Usage Page. The
reason for the Usage Page is that it is necessary to allow for
more than 256 possible Usage tags. Usage Page tags are
used as a second byte which allows for up to 65536 Usages.

Logical Minimum and Logical Maximum are used to bound
the values that a device will return. 

Report Size and Report Count define the structures that the
data will be transferred in. Report Size gives the size of the
structure in bits. Report Count defines how many structures
will be used. 

Collection items are used to show a relationship between two
or more sets of data. End Collection items simply close the
collection.

In this UPS implementation the report descriptor contains the
following collections:

• Main AC Flow Physical Collection

• Output AC Flow Physical Collection

• Battery System Physical Collection

• Power Converter Physical Collection

— AC Input Physical Collection

— AC Output Physical Collection

Each one of these collections is sent to the host through a
different report and therefore each has a different report id.

In this UPS implementation these collections contain the fol-
lowing objects as well as the report ids: 

• The Main AC Flow Physical Collection contains:

— Flow ID

— Configuration Voltage

— Configuration Frequency

— Low Voltage Transfer (the minimum line voltage allowed 
before the UPS system transfers to battery backup)

— High Voltage Transfer (the maximum line voltage al-
lowed before the UPS system transfers to battery back-
up)

— Manufacturer Name Index

— Product Index

— Serial Number Index

• The Output AC Flow Physical Collection contains:

— Flow ID

— Configuration Voltage

— Configuration Frequency

— Configuration Apparent Power

— Configuration Active Power (RMS)

— Delay Before Startup

— Delay Before Shutdown

• The Battery System Physical Collection contains:

— Battery System ID

— Present Status (Used, Good)

— Voltage

— Temperature

— Test

• The Power Converter Physical Collection contains:

— Power Converter ID

— AC Input Physical Collection

— AC Output Physical Collection

• The AC Input Physical Collection contains:

— Input ID

— Flow ID



Designing a Low-Cost USB UPS Interface

13

— Present Status (Good)

— Voltage

— Frequency

• The AC Output Physical Collection contains:

— Flow ID

— Voltage

— Frequency

— Percent Load

— Present Status (Overload, Boost, Buck)

An example of part of a report descriptor for a UPS can be
found below.

Example of part of the report descrip-
tor

Usage Page (Power Device)
Usage (UPS)
Collection (Application)

Usage Page (Power Device)
Usage (Flow)
Collection (Physical)

ReportID (1)
Usage (ConfigVoltage)
Report Size (16)
Report Count (1)
Unit (Volt)
UnitExponent (7)
Logical Minimum (0)
Logical Maximum (250)
Feature (Data,Variable,Ab-

solute)
End Collection

End Collection

It is important to note that all examples given here are merely
for clarification. They are not necessarily definitive solutions.

A more detailed description of all items discussed here as
well as other descriptor issues can be found in the “Device
Class Definition for Human Interface Devices (HID)” revision
1.0, “Universal Serial Bus Device Class Definition and Usage
Table for Power Devices” revision 0.9a and in the “Universal
Serial Bus Specification” revision 1.0, chapter 9. Both of these
documents can be found on the USB world wide web site at
http://www.usb.org/.

String Descriptors

String descriptors are used to specify any strings that need to
be sent to the host. They could be used for manufacturer
name, product and serial number, etc. They are optional and
are UNICODE encoded. An example of a string descriptor is
given below.

Example of string descriptor

Descriptor Length (in bytes)
Descriptor Type (string)
String

In this application string descriptors are implemented as dy-
namic except the language descriptor which is static and set
to “U.S. English”. Dynamic descriptors are variable depend-
ing on the UPS connected. Data is sent from the RAM not
from the ROM. This allows us not to change the code when

connecting to a different UPS. The strings supported are the
Manufacturer name, product and serial number. 

When the host sends a packet asking for one of the string
descriptors the controller will poll the UPS on the RS-232 bus
and get the string then send it to the host in the right format.

Note that unlike report descriptors that only describe the for-
mat of the data sent through reports, the string descriptors
actually include the string itself (there is no get string request).
The get string descriptor subroutine implementation is shown
in Figure 17.

Conclusion
USB has been gaining popularity due to its simple connec-
tion, plug and play feature, and hot insertion capability. The
two main enabling factors of the proliferation of the USB de-
vices are cost and functionality. The CY7C63001 meets both
requirements by integrating the USB SIE and multi-function
I/Os with a USB optimized RISC core. This application note
allows designers to easily convert an RS-232 UPS interface
to a USB UPS interface



Designing a Low-Cost USB UPS Interface

14

Figure 15. Get Report Subroutine

ASCII to BCD conversion

Return

Save results in appropriate bytes

Call Send_data subroutine

from the UPS
Receive the result

Y

N

error?

Y

N supported
request?

Y

N report
 end?

fill byte with FFh

(Send data to host)

Send command on 

Get Report

Check which report ID and
call the appropriate subroutine

RS-232 to the UPS



Designing a Low-Cost USB UPS Interface

15

Figure 16. Set Report Subroutine

Stall

Return

Send Test UPS command

Y

Nright 

Set Report

report ID? 



Designing a Low-Cost USB UPS Interface

© Cypress Semiconductor Corporation, 1998. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.

Figure 17. Get String Descriptor Subroutine

Arrange String

Return

Get String Length

Send String Descriptor 

and send command to 
Check which string it is

Y

N

error?

Y

N supported
request?

fill byte with FFh

 to the host

Get String Descriptor

Y

N

Language 
String?

Send String from ROM

UPS through RS-232 interface

Receive Result from UPS


